6,128 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
A Self Triggered Amplifier/Digitizer Chip for CBM
The development of front-end electronics for the planned CBM experiment at FAIR/GSI is in full progress. For charge readout of the various sub-detectors a new self-triggered amplification and digitization chip is being designed and tested. The mixed signal readout chip will have 32-64 channels each containing a low-power/low-noise preamplifier/shaper front-end, an 8-9 bit ADC and a digital post-processing based on a FIR/IIR-filter. The ADC has a pipeline architecture that uses a novel current-mode storage cell as a basic building block. The current prototype provides 26 different parametrized preamplifier/shaper/discriminator channels, 8 pipeline ADCs, a readout shift register matrix and a synthesized redundant signed binary (RSD) decoder
Recommended from our members
A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana.
In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium
Differentiating Phonotactic Probability and Neighborhood Density in Adult Word Learning
This is the author's accepted manuscript. The original is available at http://jslhr.pubs.asha.org/article.aspx?articleid=1762869&resultClick=3Purpose
The purpose of this study was to differentiate effects of phonotactic probability, the likelihood of occurrence of a sound sequence, and neighborhood density, the number of words that sound similar to a given word, on adult word learning. A second purpose was to determine what aspect of word learning (viz., triggering learning, formation of an initial representation, or integration with existing representations) was influenced by each variable.
Method
Thirty-two adults were exposed to 16 nonwords paired with novel objects in a story context. The nonwords orthogonally varied in phonotactic probability and neighborhood density. Learning was measured following 1, 4, and 7 exposures in a picture-naming task. Partially correct (i.e., 2 of 3 phonemes correct) and completely correct responses (i.e., 3 of 3 phonemes correct) were analyzed together and independently to examine emerging and partial representations of new words versus complete and accurate representations of new words.
ResultsAnalysis of partially correct and completely correct responses combined showed that adults learned a lower proportion of high-probability nonwords than low-probability nonwords (i.e., high-probability disadvantage) and learned a higher proportion of high-density nonwords than low-density nonwords (i.e., high-density advantage). Separate analysis of partially correct responses yielded an effect of phonotactic probability only, whereas analysis of completely correct responses yielded an effect of neighborhood density only.
Conclusions
These findings suggest that phonological and lexical processing influence different aspects of word learning. In particular, phonotactic probability may aid in triggering new learning, whereas neighborhood density may influence the integration of new lexical representations with existing representations
Shell stabilization of super- and hyperheavy nuclei without magic gaps
Quantum stabilization of superheavy elements is quantified in terms of the
shell-correction energy. We compute the shell correction using self-consistent
nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the
relativistic mean-field model, for a number of parametrizations. All the forces
applied predict a broad valley of shell stabilization around Z=120 and
N=172-184. We also predict two broad regions of shell stabilization in
hyperheavy elements with N approx 258 and N approx 308. Due to the large
single-particle level density, shell corrections in the superheavy elements
differ markedly from those in lighter nuclei. With increasing proton and
neutron numbers, the regions of nuclei stabilized by shell effects become
poorly localized in particle number, and the familiar pattern of shells
separated by magic gaps is basically gone.Comment: 6 pages REVTEX, 4 eps figures, submitted to Phys. Lett.
Broken symmetries and pattern formation in two-frequency forced Faraday waves
We exploit the presence of approximate (broken) symmetries to obtain general
scaling laws governing the process of pattern formation in weakly damped
Faraday waves. Specifically, we consider a two-frequency forcing function and
trace the effects of time translation, time reversal and Hamiltonian structure
for three illustrative examples: hexagons, two-mode superlattices, and two-mode
rhomboids. By means of explicit parameter symmetries, we show how the size of
various three-wave resonant interactions depends on the frequency ratio m:n and
on the relative temporal phase of the two driving terms. These symmetry-based
predictions are verified for numerically calculated coefficients, and help
explain the results of recent experiments.Comment: 4 pages, 6 figure
Skyrme Hartree-Fock Calculations for the Alpha Decay Q Values of Super-Heavy Nuclei
Hartree-Fock calculations with the SKX Skyrme interaction are carried out to
obtain alpha-decay Q values for deformed nuclei above Pb assuming axial
symmetry. The results for even-even nuclei are compared with experiment and
with previous calculations. Predictions are made for alpha-decay Q values and
half-lives of even-even super-heavy nuclei. The results are also compared for
the recently discovered odd-even chain starting at Z=112 and N=165.Comment: 17 pages, 8 figures, 1 tabl
Fission-Residues Produced in the Spallation Reaction 238U+p at 1 A GeV
Fission fragments from 1 A GeV 238U projectiles irradiating a hydrogen target
were investigated by using the fragment separator FRS for magnetic selection of
reaction products including ray-tracing and DE-ToF techniques. The momentum
spectra of 733 identified fragments were analysed to provide isotopic
production cross sections, fission-fragment velocities and recoil momenta of
the fissioning parent nuclei. Besides their general relevance, these quantities
are also demanded for applications. Calculations and simulations with codes
commonly used and recently developed or improved are compared to the data.Comment: 60 pages, 21 figures, 4 tables, 2 appendices (15 pages
Search for long lived heaviest nuclei beyond the valley of stability
The existence of long lived superheavy nuclei (SHN) is controlled mainly by
spontaneous fission and -decay processes. According to microscopic
nuclear theory, spherical shell effects at Z=114, 120, 126 and N=184 provide
the extra stability to such SHN to have long enough lifetime to be observed. To
investigate whether the so-called "stability island" could really exist around
the above Z, N values, the -decay half lives along with the spontaneous
fission and -decay half lives of such nuclei are studied. The
-decay half lives of SHN with Z=102-120 are calculated in a quantum
tunneling model with DDM3Y effective nuclear interaction using
values from three different mass formulae prescribed by Koura, Uno, Tachibana,
Yamada (KUTY), Myers, Swiatecki (MS) and Muntian, Hofmann, Patyk, Sobiczewski
(MMM). Calculation of spontaneous fission (SF) half lives for the same SHN are
carried out using a phenomenological formula and compared with SF half lives
predicted by Smolanczuk {\it et al}. Possible source of discrepancy between the
calculated -decay half lives of some nuclei and the experimental data
of GSI, JINR-FLNR, RIKEN are discussed. In the region of Z=106-108 with N
160-164, the -stable SHN is predicted to have
highest -decay half life () using
value from MMM. Interestingly, it is much greater than the recently measured
() of deformed doubly magic
nucleus. A few fission-survived long-lived SHN which are either -stable
or having large -decay half lives are predicted to exist near
, , and .
These nuclei might decay predominantly through -particle emission.Comment: 14 pages, 6 figures, 1 tabl
Two-Step Model of Fusion for Synthesis of Superheavy Elements
A new model is proposed for fusion mechanisms of massive nuclear systems
where so-called fusion hindrance exists. The model describes two-body collision
processes in an approaching phase and shape evolutions of an amalgamated system
into the compound nucleus formation. It is applied to Ca-induced
reactions and is found to reproduce the experimental fusion cross sections
extremely well, without any free parameter. Combined with the statistical decay
theory, residue cross sections for the superheavy elements can be readily
calculated. Examples are given.Comment: 4 pages, 4 figure
- …