75 research outputs found

    Meiofaunal diversityand nematode assemblages in two submarine caves of a mediterranean marine protected area

    Get PDF
    Submarine caves are environments of great ecological interest because of the occurrence of peculiar conditions, such as the attenuation of light and reduced water turnover, which can determine oligotrophic conditions from the entrance to the interior part of the cave. These environmental gradients may influence the distribution of the communities inhabiting submarine caves. In this study we investigated the meiofaunal community and nematode assemblages from the sediments inside and outside two submarine caves in Ustica Island Marine Protected Area (southwest Italy): Grotta Falconiera and Grotta dei Gamberi. Consistently with a general pattern of distribution reported by several studies on benthic organisms, our results showed a decrease in the abundance and changes in the taxa composition of the meiofaunal community along the exterior-interior axis of the caves, also highlighting the dissimilarity between the dark and semi-dark communities. We found a significant influence of the availability of organic matter (i.e. phytopigment concentrations) on the distribution and composition of both the meiofauna and the nematode community inside the caves. Different nematode assemblages characterized the inside and the outside of the two caves, with species occurring exclusively in the sediment of both caves, particularly in the dark portions, and completely absent in the external sediments. Environmental features of submarine caves may affect food resources inside the caves and consequently trophic nematode assemblages. Our results showed a difference in feeding strategies between nematodes inhabiting the caves and those living outside, suggesting that in the two caves investigated, bacteria might represent the most important food source for nematodes

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    Personalization Paradox in Behavior Change Apps:Lessons from a Social Comparison-Based Personalized App for Physical Activity

    Get PDF
    Social comparison-based features are widely used in social computing apps. However, most existing apps are not grounded in social comparison theories and do not consider individual differences in social comparison preferences and reactions. This paper is among the first to automatically personalize social comparison targets. In the context of an m-health app for physical activity, we use artificial intelligence (AI) techniques of multi-armed bandits. Results from our user study (n=53) indicate that there is some evidence that motivation can be increased using the AI-based personalization of social comparison. The detected effects achieved small-to-moderate effect sizes, illustrating the real-world implications of the intervention for enhancing motivation and physical activity. In addition to design implications for social comparison features in social apps, this paper identified the personalization paradox, the conflict between user modeling and adaptation, as a key design challenge of personalized applications for behavior change. Additionally, we propose research directions to mitigate this Personalization Paradox

    Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control

    Get PDF
    Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination

    Mitochondria of the Yeasts Saccharomyces cerevisiae and Kluyveromyces lactis Contain Nuclear rDNA-Encoded Proteins

    Get PDF
    In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5′ end or 3′ end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5′ flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5′ and 3′ ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats

    Transcriptome-Wide Binding Sites for Components of the Saccharomyces cerevisiae Non-Poly(A) Termination Pathway: Nrd1, Nab3, and Sen1

    Get PDF
    RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3′ antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3′ end of most pre–mRNA transcripts, suggesting an extensive role in mRNA 3′ end formation and/or termination

    Mutations of RNA polymerase II activate key genes of the nucleoside triphosphate biosynthetic pathways

    Get PDF
    The yeast URA2 gene, encoding the rate-limiting enzyme of UTP biosynthesis, is transcriptionally activated by UTP shortage. In contrast to other genes of the UTP pathway, this activation is not governed by the Ppr1 activator. Moreover, it is not due to an increased recruitment of RNA polymerase II at the URA2 promoter, but to its much more effective progression beyond the URA2 mRNA start site(s). Regulatory mutants constitutively expressing URA2 resulted from cis-acting deletions upstream of the transcription initiator region, or from amino-acid replacements altering the RNA polymerase II Switch 1 loop domain, such as rpb1-L1397S. These two mutation classes allowed RNA polymerase to progress downstream of the URA2 mRNA start site(s). rpb1-L1397S had similar effects on IMD2 (IMP dehydrogenase) and URA8 (CTP synthase), and thus specifically activated the rate-limiting steps of UTP, GTP and CTP biosynthesis. These data suggest that the Switch 1 loop of RNA polymerase II, located at the downstream end of the transcription bubble, may operate as a specific sensor of the nucleoside triphosphates available for transcription

    Genome and Transcriptome Analysis of the Food-Yeast Candida utilis

    Get PDF
    The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis

    Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress

    Get PDF
    RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (\u3c7CRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein\u2013RNA interactions in vivo on a minute time-scale. Here, using \u3c7CRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein\u2013RNA interactions within 1\u2009min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. \u3c7CRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein\u2013RNA interactions
    corecore