9,909 research outputs found

    Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    Get PDF
    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts of small reservoirs are subject to climate change. Using a case-study on North-East Brazil, this paper shows that climate change impacts on water availability may be severe, and impacts on distributed water availability from small reservoirs may exceed impacts on centralised water availability from large reservoirs. Next, the paper shows that the effect of small reservoirs on water availability from large reservoirs may be significant, and increase both in relative and absolute sense under unfavourable climate change

    Finding the optimal nets for self-folding Kirigami

    Get PDF
    Three-dimensional shells can be synthesized from the spontaneous self-folding of two-dimensional templates of interconnected panels, called nets. However, some nets are more likely to self-fold into the desired shell under random movements. The optimal nets are the ones that maximize the number of vertex connections, i.e., vertices that have only two of its faces cut away from each other in the net. Previous methods for finding such nets are based on random search and thus do not guarantee the optimal solution. Here, we propose a deterministic procedure. We map the connectivity of the shell into a shell graph, where the nodes and links of the graph represent the vertices and edges of the shell, respectively. Identifying the nets that maximize the number of vertex connections corresponds to finding the set of maximum leaf spanning trees of the shell graph. This method allows not only to design the self-assembly of much larger shell structures but also to apply additional design criteria, as a complete catalog of the maximum leaf spanning trees is obtained.Comment: 6 pages, 5 figures, Supplemental Material, Source Cod

    Numerical modeling of the wind flow over a transverse dune

    Get PDF
    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, uu_{\ast}: it is nearly independent of uu_{\ast} for shear velocities within the range between 0.20.2\,ms and $0.8\,$ms but increases linearly with uu_{\ast} for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if uu_{\ast} is larger than approximately 0.390.39\,ms, whereas a larger value of $u_{\ast}$ (about $0.49\,$ms) is required to initiate this reverse transport.Comment: 11 pages, 8 figure

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure
    corecore