6,999 research outputs found

    A matter of time: Implicit acquisition of recursive sequence structures

    Get PDF
    A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular gramma

    First-order transitions and triple point on a random p-spin interaction model

    Full text link
    The effects of competing quadrupolar- and spin-glass orderings are investigated on a spin-1 Ising model with infinite-range random pp-spin interactions. The model is studied through the replica approach and a phase diagram is obtained in the limit p→∞p\to\infty. The phase diagram, obtained within replica-symmetry breaking, exhibits a very unusual feature in magnetic models: three first-order transition lines meeting at a commom triple point, where all phases of the model coexist.Comment: 9 pages, 2 ps figures include

    Gaussian model of explosive percolation in three and higher dimensions

    Full text link
    The Gaussian model of discontinuous percolation, recently introduced by Ara\'ujo and Herrmann [Phys. Rev. Lett., 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple-cubic lattice, in the thermodynamic limit, we report a finite jump of the order parameter, J=0.415±0.005J=0.415 \pm 0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension dA=2.5±0.2d_A = 2.5 \pm 0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with finite number of clusters at the threshold

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Development of a fretting-fatigue mapping concept: The effect of material properties and surface treatments

    Get PDF
    Fretting-fatigue induced by combined localized cyclic contact motion and external bulk fatigue loadings may result in premature and dramatic failure of the contacting components. Depending on fretting and fatigue loading conditions, crack nucleation and possibly crack propagation can be activated. This paper proposes a procedure for estimating these two damage thresholds. The crack nucleation boundary is formalized by applying the Crossland high cycle fatigue criterion, taking into account the stress gradient and the ensuing #size##effect#. The prediction of the crack propagation condition is formalized using a short crack arrest description. Applied to an AISI 1034 steel, this methodology allows the development of an original material response fretting-fatigue map (FFM). The impact of material properties and surface treatments is investigated

    Behaviour of shot peening combined with WC-Co HVOF coating under complex fretting wear and fretting fatigue loading conditions

    Get PDF
    This study investigated the fretting and fretting fatigue performance of tungsten carbide–cobalt (WC–Co) HVOF spray coating systems. Fretting wear and fretting fatigue tests of specimens with shot peening and WC–Co coatings on 30NiCrMo substrates were conducted. The WC-Co coating presents very good wear resistance and decreases by more than 9 times the energy wear coefficient (α) under fretting conditions. The tested coating reduces crack nucleation under both fretting and fretting fatigue studied situations. Finally the crack arrest conditions are evaluated by the combined fretting and fretting fatigue investigation. It is shown and explained how and why this combined surface treatment (shot peening and WC–Co) presents a very good compromise against wear and cracking fretting damage
    • …
    corecore