107 research outputs found
Recommended from our members
The physiological responses of cacao to the environment and the implications for climate change resilience. A review
Cacao (Theobroma cacao L.) is a tropical perennial crop which is of great economic importance to the confectionary industry and to the economies of many countries of the humid tropics where it is grown. Some recent studies have suggested climate change could severely impact cacao production in West Africa. It is essential to incorporate our understanding of the physiology and genetic variation within cacao germplasm when discussing the implications of climate change on cacao productivity and developing strategies for climate resilience in cacao production.
Here we review the current research on the physiological responses of cacao to various climate factors. Our main findings are 1) water limitation causes significant yield reduction in cacao but genotypic variation in sensitivity is evident, 2) in the field cacao experiences higher temperatures than is often reported in the literature, 3) the complexity of the cacao/ shade tree interaction can lead to contradictory results, 4) elevated CO2 may alleviate some negative effects of climate change 5) implementation of mitigation strategies can help reduce environmental stress, 6) significant gaps in the research need addressing to accelerate the development of climate resilience. Harnessing the significant genetic variation apparent within cacao germplasm is essential to develop modern varieties capable of high yields in non-optimal conditions. Mitigation strategies will also be essential but to use shading to best effect shade tree selection is crucial to avoid resource competition. Cacao is often described as being sensitive to climate change but genetic variation, adaptive responses, appropriate mitigation strategies and interactive climate effects should all be considered when predicting the future of cacao production. Incorporating these physiological responses to various environmental conditions and developing a deeper understanding of the processes underlying these responses will help to accelerate the development of a more resource use efficient tree ensuring sustainable production into the future
Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus
The pemphigus group comprises the autoimmune intraepidermal blistering diseases classically divided into two major types: pemphigus vulgaris and pemphigus foliaceous. Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus are rarer forms that present some clinical, histological and immunopathological characteristics that are different from the classical types. These are reviewed in this article. Future research may help definitively to locate the position of these forms in the pemphigus group, especially with regard to pemphigus herpetiformis and the IgG/ IgA pemphigus.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology DepartmentUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology and Pathology DepartmentsUNIFESP, EPM, Dermatology DepartmentUNIFESP, EPM, Dermatology and Pathology DepartmentsSciEL
Response of Cocoa Trees (Theobroma cacao) to a 13-month Dessication Period in Sulawesi, Indonesia
In South-east Asia, ENSO-related droughts represent irregularly occuring hazards for agroforestry systems containing cocoa which are predicted to increase in severity with expected climate warming. To characterize the drought response of mature cocoa tree, we conducted the Sulawesi Throughfall Displacement Experiment in a shaded (Gliricidia sepium) cocoa agroforestry system in Central Sulawesi, Indonesia. Three large sub-canopy roofs were installed to reduce throughfall by about 80% over a 13-month period to test the hypotheses that (i) cocoa trees are sensitive to drought due to their shallow fine root system, and (ii)bean yield is more sensitive to drought than leaf or stem growth. As 83% of fine root (diameter 2mm) was located in the upper 40 cm of the soil, the cocoa tree examined had a very shallow root system. Cocoa and Gliricidia differed in their vertical rooting patterns, thereby reducing competition for water. Despite being exposed for several mnths to soil water contents close to the conventional wilting point, cocoa trees showed no significant decreases in leaf biomass, stem and branch wood production or fine root biomass. Possible causes are active osmotic adjusment in roots, mitigation of drought stress by shading from Gliricidia or other factors. By contrast, production of cocoa bean
Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa
Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.18531018102
- …