14 research outputs found

    XRCC1 gene polymorphisms in a population sample and in women with a family history of breast cancer from Rio de Janeiro (Brazil)

    Get PDF
    The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer. In the present study, we estimated the frequencies of the XRCC1 gene polymorphisms Arg194Trp and Arg399Gln in healthy individuals and also in women at risk of breast cancer due to family history from Rio de Janeiro. The common genotypes in both positions (194 and 399) were the most frequent in this Brazilian sample. Although the 194Trp variant was overrepresented in women reporting familial cases of breast cancer, no statistically significant differences concerning genotype distribution or intragenic interactions were found between this group and the controls. Thus, in the population analyzed by us, variants Arg194Trp and Arg399Gln did not appear to have any impact on breast cancer susceptibility

    XRCC1 gene polymorphisms in a population sample and in women with a family history of breast cancer from Rio de Janeiro (Brazil)

    Get PDF
    The X-ray repair cross-complementing Group1 (XRCC1) gene has been defined as essential in the base excision repair (BER) and single-strand break repair processes. This gene is highly polymorphic, and the most extensively studied genetic changes are in exon 6 (Arg194Trp) and in exon 10 (Arg399Gln). These changes, in conserved protein sites, may alter the base excision repair capacity, increasing the susceptibility to adverse health conditions, including cancer. In the present study, we estimated the frequencies of the XRCC1 gene polymorphisms Arg194Trp and Arg399Gln in healthy individuals and also in women at risk of breast cancer due to family history from Rio de Janeiro. The common genotypes in both positions (194 and 399) were the most frequent in this Brazilian sample. Although the 194Trp variant was overrepresented in women reporting familial cases of breast cancer, no statistically significant differences concerning genotype distribution or intragenic interactions were found between this group and the controls. Thus, in the population analyzed by us, variants Arg194Trp and Arg399Gln did not appear to have any impact on breast cancer susceptibility

    Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>predominates, because this molecule acts as a receptor for this protozoan. In the present study, Duffy blood group genotyping in <it>P. vivax </it>malaria patients from four different Brazilian endemic areas is reported, exploring significant associations between blood group variants and susceptibility or resistance to malaria.</p> <p>Methods</p> <p>The <it>P. vivax </it>identification was determined by non-genotypic and genotypic screening tests. The Duffy blood group was genotyped by PCR/RFLP in 330 blood donors and 312 malaria patients from four Brazilian Amazon areas. In order to assess the variables significance and to obtain independence among the proportions, the Fisher's exact test was used.</p> <p>Results</p> <p>The data show a high frequency of the <it>FYA/FYB </it>genotype, followed by <it>FYB/FYB, FYA/FYA</it>, <it>FYA/FYB-33 </it>and <it>FYB/FYB-33</it>. Low frequencies were detected for the <it>FYA/FY</it><sup><it>X</it></sup>, <it>FYB/FY</it><sup><it>X</it></sup>, <it>FYX/FY</it><sup><it>X </it></sup>and <it>FYB-33/FYB-33 </it>genotypes. Negative Duffy genotype (<it>FYB-33/FYB-33</it>) was found in both groups: individuals infected and non-infected (blood donors). No individual carried the <it>FY</it><sup><it>X</it></sup><it>/FYB-33 </it>genotype. Some of the Duffy genotypes frequencies showed significant differences between donors and malaria patients.</p> <p>Conclusion</p> <p>The obtained data suggest that individuals with the <it>FYA/FYB </it>genotype have higher susceptibility to malaria. The presence of the <it>FYB-33 </it>allele may be a selective advantage in the population, reducing the rate of infection by <it>P. vivax </it>in this region. Additional efforts may contribute to better elucidate the physiopathologic differences in this parasite/host relationship in regions endemic for <it>P. vivax </it>malaria, in particular the Brazilian Amazon region.</p

    Genetic Diversity of Circulating Rotavirus Strains in Tanzania Prior to the Introduction of Vaccination

    Get PDF
    Background: Tanzania currently rolls out vaccination against rotavirus-diarrhea, a major cause of child illness and death. As the vaccine covers a limited number of rotavirus variants, this study describes the molecular epidemiology of rotavirus among children under two years in Dar es Salaam, Tanzania, prior to implementation of vaccination. Methods: Stool specimens, demographic and clinical information, were collected from 690 children admitted to hospital due to diarrhea (cases) and 545 children without diarrhea (controls) during one year. Controls were inpatient or children attending child health clinics. Rotavirus antigen was detected using ELISA and positive samples were typed by multiplex semi-nested PCR and sequencing. Results: The prevalence of rotavirus was higher in cases (32.5%) than in controls (7.7%, P,0.001). The most common G genotypes were G1 followed by G8, G12, and G4 in cases and G1, G12 and G8 in controls. The Tanzanian G1 variants displayed 94% similarity with the Rotarix vaccine G1 variant. The commonest P genotypes were P[8], P[4] and P[6], and the commonest G/P combination G1 P[8] (n = 123), G8 P[4] and G12 P[6]. Overall, rotavirus prevalence was higher in cool (23.9%) than hot months (17.1%) of the year (P = 0.012). We also observed significant seasonal variation of G genotypes. Rotavirus was most frequently found in the age group of four to six months. The prevalence of rotavirus in cases was lower in stunted children (28.9%) than in non-stunted children (40.1%, P = 0.003) and lower in HIV-infected (15.4%, 4/26) than in HIVuninfected children (55.3%, 42/76, P,0.001). Conclusion: This pre-vaccination study shows predominance of genotype G1 in Tanzania, which is phylogenetically distantly related to the vaccine strains. We confirm the emergence of genotype G8 and G12. Rotavirus infection and circulating genotypes showed seasonal variation. This study also suggests that rotavirus may not be an opportunistic pathogen in children infected with HIV
    corecore