303 research outputs found

    Noncollinear paramagnetism of a GaAs two-dimensional hole system.

    Get PDF
    We have performed transport measurements in tilted magnetic fields in a two-dimensional hole system grown on the surface of a (311)A GaAs crystal. A striking asymmetry of Shubnikov-de Haas oscillations occurs upon reversing the in-plane component of the magnetic field along the low-symmetry [2[over ÂŻ]33] axis. As usual, the magnetoconductance oscillations are symmetric with respect to reversal of the in-plane field component aligned with the high-symmetry [011[over ÂŻ]] axis. Our observations demonstrate that an in-plane magnetic field can generate an out-of-plane component of magnetization in a low-symmetry hole system, creating new possibilities for spin manipulation.This work was supported by the Australian Research Council (ARC) under the DP scheme and by the NSF under Grant No. DMR-1310199. ARH acknowledges an ARC DOR award.This is the accepted manuscript. The final version is available from APS at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.236401

    Compressibility Measurements of Quasi-One-Dimensional Quantum Wires

    Get PDF
    We report measurements of the compressibility of a one-dimensional quantum wire, defined in the upper well of a GaAs/AlGaAs double quantum well heterostructure. A wire defined simultaneously in the lower well probes the ability of the upper wire to screen the electric field from a biased surface gate. The technique is sensitive enough to resolve spin splitting of the subbands in the presence of an in-plane magnetic field. We measure a compressibility signal due to the 0.7 structure and study its evolution with increasing temperature and magnetic field. We see no evidence of the formation of the quasibound state predicted by the Kondo model, instead our data are consistent with theories which predict that the 0.7 structure arises as a result of spontaneous spin polarization

    Temperature Dependence of Spin-Split Peaks in Transverse Electron Focusing

    Get PDF
    We present experimental results of transverse electron-focusing measurements performed using n-type GaAs. In the presence of a small transverse magnetic field (B⊥), electrons are focused from the injector to detector leading to focusing peaks periodic in B⊥. We show that the odd-focusing peaks exhibit a split, where each sub-peak represents a population of a particular spin branch emanating from the injector. The temperature dependence reveals that the peak splitting is well defined at low temperature whereas it smears out at high temperature indicating the exchange-driven spin polarisation in the injector is dominant at low temperatures

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Impact of Rituximab on Immunoglobulin Concentrations and B Cell Numbers after Cyclophosphamide Treatment in Patients with ANCA-Associated Vasculitides

    Get PDF
    OBJECTIVE: To assess the impact of immunosuppressive therapy with cyclophosphamide (CYC) and rituximab (RTX) on serum immunoglobulin (Ig) concentrations and B lymphocyte counts in patients with ANCA-associated vasculitides (AAVs). METHODS: Retrospective analysis of Ig concentrations and peripheral B cell counts in 55 AAV patients. RESULTS: CYC treatment resulted in a decrease in Ig levels (median; interquartile range IQR) from IgG 12.8 g/L (8.15-15.45) to 9.17 g/L (8.04-9.90) (p = 0.002), IgM 1.05 g/L (0.70-1.41) to 0.83 g/L (0.60-1.17) (p = 0.046) and IgA 2.58 g/L (1.71-3.48) to 1.58 g/L (1-31-2.39) (p = 0.056) at a median follow-up time of 4 months. IgG remained significantly below the initial value at 14.5 months and 30 months analyses. Subsequent RTX treatment in patients that had previously received CYC resulted in a further decline in Ig levels from pre RTX IgG 9.84 g/L (8.71-11.60) to 7.11 g/L (5.75-8.77; p = 0.007), from pre RTX IgM 0.84 g/L (0.63-1.18) to 0.35 g/L (0.23-0.48; p<0.001) and from pre RTX IgA 2.03 g/L (1.37-2.50) to IgA 1.62 g/L (IQR 0.84-2.43; p = 0.365) 14 months after RTX. Treatment with RTX induced a complete depletion of B cells in all patients. After a median observation time of 20 months median B lymphocyte counts remained severely suppressed (4 B-cells/µl, 1.25-9.5, p<0.001). Seven patients (21%) that had been treated with CYC followed by RTX were started on Ig replacement because of severe bronchopulmonary infections and serum IgG concentrations below 5 g/L. CONCLUSIONS: In patients with AAVs, treatment with CYC leads to a decline in immunoglobulin concentrations. A subsequent RTX therapy aggravates the decline in serum immunoglobulin concentrations and results in a profoundly delayed B cell repopulation. Surveying patients with AAVs post CYC and RTX treatment for serum immunoglobulin concentrations and persisting hypogammaglobulinemia is warranted

    Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes

    Get PDF
    Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin–orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin–orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin–orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field

    Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii

    Get PDF
    During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naĂŻve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naĂŻve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses

    Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas

    Get PDF
    Node biopsies of 30 benign lymphadenopathies and 71 B-cell non-Hodgkin's lymphomas (B-NHLs) were investigated for microvessel and macrophage counts using immunohistochemistry and morphometric analysis. Both counts were significantly higher in B-NHL. Moreover, when these were grouped into low-grade and high-grade lymphomas, according to the Kiel classification and Working Formulation (WF), statistically significant higher counts were found in the high-grade tumours. Immunohistochemistry and electron microscopy revealed a close spatial association between microvessels and macrophages. Overall, the results suggest that, in analogy to what has already been shown in solid tumours, angiogenesis occurring in B-NHLs increases with tumour progression, and that macrophages promote the induction of angiogenesis via the release of their angiogenic factors. Š 1999 Cancer Research Campaig

    Local IL-17 Production Exerts a Protective Role in Murine Experimental Glomerulonephritis

    Get PDF
    IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of glomerulonephritis and IL-17 deficient mice are protected from nephrotoxic nephritis. However, a regulatory role for IL-17 has recently emerged. We describe a novel protective function for IL-17 in the kidney. Bone marrow chimeras were created using wild-type and IL-17 deficient mice and nephrotoxic nephritis was induced. IL-17 deficient hosts transplanted with wild-type bone marrow had worse disease by all indices compared to wild-type to wild-type bone marrow transplants (serum urea p<0.05; glomerular thrombosis p<0.05; tubular damage p<0.01), suggesting that in wild-type mice, IL-17 production by renal cells resistant to radiation is protective. IL-17 deficient mice transplanted with wild-type bone marrow also had a comparatively altered renal phenotype, with significant differences in renal cytokines (IL-10 p<0.01; IL-1β p<0.001; IL-23 p<0.01), and macrophage phenotype (expression of mannose receptor p<0.05; inducible nitric oxide synthase p<0.001). Finally we show that renal mast cells are resistant to radiation and produce IL-17, suggesting they are potential local mediators of disease protection. This is a novel role for intrinsic cells in the kidney that are radio-resistant and produce IL-17 to mediate protection in nephrotoxic nephritis. This has clinical significance as IL-17 blockade is being trialled as a therapeutic strategy in some autoimmune diseases

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations
    • …
    corecore