91 research outputs found

    Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties

    Get PDF
    Deep-level defects in n-type GaAs1-x Bi x having 0 ≤ x ≤ 0.023 grown on GaAs by molecular beam epitaxy at substrate temperature of 378 °C have been injvestigated by deep level transient spectroscopy. The optical properties of the layers have been studied by contactless electroreflectance and photoluminescence. We find that incorporating Bi suppresses the formation of GaAs-like electron traps, thus reducing the total trap concentration in dilute GaAsBi layers by over two orders of magnitude compared to GaAs grown under the same conditions. In order to distinguish between Bi- and host-related traps and to identify their possible origin, we used the GaAsBi band gap diagram to correlate their activation energies in samples with different Bi contents. This approach was recently successfully applied for the identification of electron traps in n-type GaAs1-x N x and assumes that the activation energy of electron traps decreases with the Bi (or N)-related downward shift of the conduction band. On the basis of this diagram and under the support of recent theoretical calculations, at least two Bi-related traps were revealed and associated with Bi pair defects, i.e. (VGa+BiGa)(-/2-) and (AsGa+BiGa)(0/1-). In the present work it is shown that these defects also influence the photoluminescence properties of GaAsBi alloys

    Antifibrinolytic Role of a Bee Venom Serine Protease Inhibitor That Acts as a Plasmin Inhibitor

    Get PDF
    Bee venom is a rich source of pharmacologically active substances. In this study, we identified a bumblebee (Bombus ignitus) venom Kunitz-type serine protease inhibitor (Bi-KTI) that acts as a plasmin inhibitor. Bi-KTI showed no detectable inhibitory effect on factor Xa, thrombin, or tissue plasminogen activator. In contrast, Bi-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent; however, this inhibitory ability was two-fold weaker than that of aprotinin. The fibrin(ogen)olytic activities of B. ignitus venom serine protease (Bi-VSP) and plasmin in the presence of Bi-KTI indicate that Bi-KTI targets plasmin more specifically than Bi-VSP. These findings demonstrate a novel mechanism by which bumblebee venom affects the hemostatic system through the antifibrinolytic activity of Bi-KTI and through Bi-VSP-mediated fibrin(ogen)olytic activities, raising interest in Bi-KTI and Bi-VSP as potential clinical agents

    Clinicoprognostic implications of increased serum levels of vascular endothelial growth factor and basic fibroblastic growth factor in early B-cell chronic lymphocytic leukaemia

    Get PDF
    To assess the relative merit of increased serum levels of vascular endothelial growth factor and basic fibroblastic growth factor in predicting the risk of disease progression of patients with early B-cell chronic lymphocytic leukaemia we analyzed 81 Binet stage A patients whose sera were taken at the time of diagnosis and evaluated for the presence of vascular endothelial growth factor and basic fibroblast growth factor using an enzyme-linked immunosorbent assay. Serum levels of vascular endothelial growth factor positively correlated with Rai sub-stages (P=0.03), peripheral blood lymphocytosis (P=0.03), bone marrow histology (P=0.04) and β2-microglobulin (β2-m) (P=0.006). When dealing with basic fibroblast growth factor only a correlation with Rai sub-stages (P=0.02) could be found. Different cut-offs set on the basis of a stratification in quartiles, failed to demonstrate any correlation between serum levels of basic fibroblast growth factor and disease progression. In contrast, patients with increased serum levels of vascular endothelial growth factor (above median value, 203 pg ml−1) had a three times increased risk of disease progression, although, in multivariate analysis only Rai sub-stages (P=0.0001) and lymphocyte doubling time (P=0.002) retained their prognostic significance. Low levels of vascular endothelial growth factor were indicative of good clinical outcome in the subgroup of patients with either low (P=0.02) or high (P=0.03) β2-m concentration. Finally, the highest prognostic power was obtained when serum vascular endothelial growth factor and β2-m were examined in combination. Median of progression-free survival of patients who had both serum vascular endothelial growth factor and β2-m higher than median value was only 13 months, in contrast median progression-free survival of patients with one marker increased (i.e. above the 50th percentile) was 40 months. Patients with both markers below the median experienced the best clinical outcome (median progression-free survival not reached at 40 months). In conclusion, serum levels of either vascular endothelial growth factor or basic fibroblast growth factor are high in patients with early chronic lymphocytic leukaemia, however, only vascular endothelial growth factor predicts behaviour of disease and helps to refine the prognosis of stage A patients

    Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    Get PDF
    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges

    Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    Get PDF
    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping

    Get PDF
    Snakebite antivenom is a 120 years old invention based on polyclonal mixtures of antibodies purified from the blood of hyper-immunized animals. Knowledge on antibody recognition sites (epitopes) on snake venom proteins is limited, but may be used to provide molecular level explanations for antivenom cross-reactivity. In turn, this may help guide antivenom development by elucidating immunological biases in existing antivenoms. In this study, we have identified and characterized linear elements of B-cell epitopes from 870 pit viper venom protein sequences by employing a high-throughput methodology based on custom designed high-density peptide microarrays. By combining data on antibody-peptide interactions with multiple sequence alignments of homologous toxin sequences and protein modelling, we have determined linear elements of antibody binding sites for snake venom metalloproteases (SVMPs), phospholipases A2s (PLA2s), and snake venom serine proteases (SVSPs). The studied antivenom antibodies were found to recognize linear elements in each of the three enzymatic toxin families. In contrast to a similar study of elapid (non-enzymatic) neurotoxins, these enzymatic toxins were generally not recognized at the catalytic active site responsible for toxicity, but instead at other sites, of which some are known for allosteric inhibition or for interaction with the tissue target. Antibody recognition was found to be preserved for several minor variations in the protein sequences, although the antibody-toxin interactions could often be eliminated completely by substitution of a single residue. This finding is likely to have large implications for the cross-reactivity of the antivenom and indicate that multiple different antibodies are likely to be needed for targeting an entire group of toxins in these recognized sites.Novo Nordisk Foundation/[NNF13OC0005613]/NNF/DinamarcaNovo Nordisk Foundation/[NNF16OC0019248]/NNF/DinamarcaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Estimating the burden of antimicrobial resistance: a systematic literature review.

    Get PDF
    Background: Accurate estimates of the burden of antimicrobial resistance (AMR) are needed to establish the magnitude of this global threat in terms of both health and cost, and to paramaterise cost-effectiveness evaluations of interventions aiming to tackle the problem. This review aimed to establish the alternative methodologies used in estimating AMR burden in order to appraise the current evidence base. Methods: MEDLINE, EMBASE, Scopus, EconLit, PubMed and grey literature were searched. English language studies evaluating the impact of AMR (from any microbe) on patient, payer/provider and economic burden published between January 2013 and December 2015 were included. Independent screening of title/abstracts followed by full texts was performed using pre-specified criteria. A study quality score (from zero to one) was derived using Newcastle-Ottawa and Philips checklists. Extracted study data were used to compare study method and resulting burden estimate, according to perspective. Monetary costs were converted into 2013 USD. Results: Out of 5187 unique retrievals, 214 studies were included. One hundred eighty-seven studies estimated patient health, 75 studies estimated payer/provider and 11 studies estimated economic burden. 64% of included studies were single centre. The majority of studies estimating patient or provider/payer burden used regression techniques. 48% of studies estimating mortality burden found a significant impact from resistance, excess healthcare system costs ranged from non-significance to 1billionperyear,whilsteconomicburdenrangedfrom1 billion per year, whilst economic burden ranged from 21,832 per case to over $3 trillion in GDP loss. Median quality scores (interquartile range) for patient, payer/provider and economic burden studies were 0.67 (0.56-0.67), 0.56 (0.46-0.67) and 0.53 (0.44-0.60) respectively. Conclusions: This study highlights what methodological assumptions and biases can occur dependent on chosen outcome and perspective. Currently, there is considerable variability in burden estimates, which can lead in-turn to inaccurate intervention evaluations and poor policy/investment decisions. Future research should utilise the recommendations presented in this review. Trial registration: This systematic review is registered with PROSPERO (PROSPERO CRD42016037510)

    Prevalence, phenotype and architecture of developmental disorders caused by de novo mutation: The Deciphering Developmental Disorders Study

    Get PDF
    Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 families with individuals with DDs, and meta-analysed these data with published data on 3,287 individuals with similar disorders. We show that the most significant factors influencing the diagnostic yield of de novo mutations are the sex of the affected individual, the relatedness of their parents and the age of both father and mother. We identified 94 genes enriched for damaging de novo mutation at genome-wide significance (P < 7 × 10−7), including 14 genes for which compelling data for causation was previously lacking. We have characterised the phenotypic diversity among these genetic disorders. We demonstrate that, at current cost differentials, exome sequencing has much greater power than genome sequencing for novel gene discovery in genetically heterogeneous disorders. We estimate that 42% of our cohort carry pathogenic DNMs (single nucleotide variants and indels) in coding sequences, with approximately half operating by a loss-of-function mechanism, and the remainder resulting in altered-function (e.g. activating, dominant negative). We established that most haplo insufficient developmental disorders have already been identified, but that many altered-function disorders remain to be discovered. Extrapolating from the DDD cohort to the general population, we estimate that developmental disorders caused by DNMs have an average birth prevalence of 1 in 213 to 1 in 448 (0.22-0.47% of live births), depending on parental age
    corecore