2,758 research outputs found

    The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of RNAi to analyse gene function <it>in vitro </it>is now widely applied in biological research. However, several difficulties are associated with its use <it>in vivo</it>, mainly relating to inefficient delivery and non-specific effects of short RNA duplexes in animal models. The latter can lead to false positive results when real-time RT-qPCR alone is used to measure target mRNA knockdown.</p> <p>Findings</p> <p>We observed that detection of an apparent siRNA-mediated knockdown <it>in vivo </it>was dependent on the primers used for real-time RT-qPCR measurement of the target mRNA. Two siRNAs specific for <it>RRM1 </it>with equivalent activity <it>in vitro </it>were administered to A549 xenografts via intratumoural injection. In each case, apparent knockdown of <it>RRM1 </it>mRNA was observed only when the primer pair used in RT-qPCR flanked the siRNA cleavage site. This false-positive result was found to result from co-purified siRNA interfering with both reverse transcription and qPCR.</p> <p>Conclusions</p> <p>Our data suggest that using primers flanking the siRNA-mediated cleavage site in RT-qPCR-based measurements of mRNA knockdown <it>in vivo </it>can lead to false positive results. This is particularly relevant where high concentrations of siRNA are introduced, particularly via intratumoural injection, as the siRNA may be co-purified with the RNA and interfere with downstream enzymatic steps. Based on these results, using primers flanking the siRNA target site should be avoided when measuring knockdown of target mRNA by real-time RT-qPCR.</p

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds

    Full text link
    A systematic analysis of low temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime and, alternatively, to identify other kinds of low temperature behaviors. Based on specific heat (CmC_m) and entropy (SmS_m) results, three different types of phase diagrams are recognized: i) with the entropy involved into the ordered phase (SMOS_{MO}) decreasing proportionally to the ordering temperature (TMOT_{MO}), ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their Cm(TMO)C_m(T_{MO}) jump (ΔCm\Delta C_m) vanishing at finite temperature, and iii) those ending in a critical point at finite temperature because their ΔCm\Delta C_m do not decrease with TMOT_{MO} producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with SMO→0S_{MO}\to 0 as TMO→0T_{MO}\to 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T≈2.5T\approx 2.5\,K, denouncing frequent misleading extrapolations down to T=0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. Particularly, a pre-critical region is identified, where the nature of the magnetic transition undergoes significant modifications, with its ∂Cm/∂T\partial C_m/\partial T discontinuity strongly affected by magnetic field and showing an increasing remnant entropy at T→0T\to 0. Physical constraints arising from the third law at T→0T\to 0 are discussed and recognized from experimental results

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period
    • …
    corecore