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Abstract 

Aβ immunisation of Alzheimer’s disease (AD) patients in the AN1792 (Elan Pharmaceuticals) trial 

caused Aβ removal and a decreased density of neurons in the cerebral cortex. As preservation of 

neurons may be a critical determinant of outcome after Aβ immunisation, we have assessed the impact 

of previous Aβ immunisation on the expression of a range of apoptotic proteins in post-mortem human 

brain tissue. Cortex from 13 AD patients immunised with AN1792 (iAD) and from 27 non-immunised 

AD (cAD) cases was immunolabelled for pro-apoptotic proteins implicated in AD pathophysiology: 

phosphorylated c-Jun N-terminal kinase (pJNK), activated caspase3 (a-casp3), phosphorylated GSK3β 

on tyrosine 216 (GSK3βtyr216), p53 and Cdk5/p35. Expression of these proteins was analysed in 

relation to immunisation status and other clinical data. The antigen load of all of these pro-apoptotic 

proteins was significantly lower in iAD than cAD (p < 0.0001). In cAD, significant correlations (p < 

0.001) were observed between: Cdk5/p35 and GSK3βtyr216; a-casp3 and Aβ42; p53 and age at death. In 

iAD, significant correlations were found between GSK3βtyr216 and a-casp3; both spongiosis and 

neuritic curvature ratio and Aβ42; and Cdk5/p35 and Aβ-antibody level. Although neuronal loss was 

increased by immunisation with AN1792, our present findings suggest downregulation of apoptosis in 

residual neurons and other cells. 

 

Keywords: Alzheimer, treatment, anti-amyloid immunotherapy, brain, neurons, impact. 
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INTRODUCTION 

Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptide and 

hyperphosphorylated tau protein, and eventually synaptic and neuronal loss. The pathophysiology of 

the neuronal death remains unclear and controversial. Neuropathological studies have provided 

evidence of apoptotic neuronal death compatible with the slow progression of neuronal degeneration 

(15, 27, 32), in addition to possible deregulated autophagic activity (3, 14, 16, 24, 44). Apoptosis is a 

sequence of programmed events leading to the activation of caspases and cell disintegration (15, 27, 

32), whereas autophagy is an intracellular catabolic process leading to the removal of aggregated 

proteins within cells (22, 28, 38). Both autophagy and apoptosis are highly regulated, play critical 

roles in tissue homeostasis, and tend to be upregulated in response to extracellular or intracellular 

stress and in neurodegenerative diseases (26). In AD, both processes have been extensively studied but 

their contribution to neuronal death remains unclear. Apoptotic cell death in AD may result from an 

imbalance between pro- and anti-apoptotic proteins (15). The expression of several pro-apoptotic 

kinases such as activated GSK3β phosphorylated at tyrosine 216 (GSK3βtyr216) (1, 6, 37), pPKR (6, 7, 

10, 29, 33, 34, 36), pJNK (9, 18, 42, 43), p53 (8) and activated caspase-3 (a-casp3) (2, 15, 17, 41) is 

increased in AD brains. In AD, autophagic activity is increased but may be dysfunctional, with failure 

of substrate clearance reflected by the presence of vacuoles (3, 14, 16, 24, 44). 

Active Aβ42 immunisation (AN1792, Elan Pharmaceuticals) in AD patients led to Aβ removal (19, 30, 

31) associated with a decrease in phosphorylated tau (pTau) (4), long-term down-regulation of 

inflammation (46), reduction in the number of neurons and reduced neuritic abnormalities (34, 39). To 

investigate possible mechanisms underlying the observed neuronal loss after immunotherapy, we have 

explored the expression of apoptotic and autophagic proteins in the unique cohort of immunised AD 

patients from the AN1792 trial.  
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MATERIALS AND METHODS  

Case selection  

Immunised AD cases (iAD) 

The brains of clinical AD patients enrolled in the initial Elan Pharmaceuticals Aβ immunisation trial 

AN1792 (19) were obtained following consent to post-mortem neuropathology. The study received 

ethical approval from Southampton and South West Hampshire Local Research Ethics Committees 

(Reference No: LRC 075/03/w). Thirteen post-mortem brains in which the cause of the dementia was 

confirmed as AD neuropathologically were included in this study.  All patients had received Aβ42 plus 

adjuvant and had died between 4 and 162 months after the first immunisation (mean 72.8 months, 

median 63 months), with Braak tangle stage V/VI disease, as previously described (34) (Table 1). The 

post-mortem delay was between 6 and 48 hours (mean 18.5 hours; median 6 hours). In addition to 

dementia, the most common clinical diagnoses recorded in the death certificate were 

bronchopneumonia, cerebrovascular accident and myocardial infarction. Other diagnoses included 

ruptured aortic aneurysm, pulmonary embolism, carcinoma of the breast, carcinoma of the bronchus, 

and carcinoma of the pancreas. Neurodegenerative pathology was assessed by standard histological 

methods including haematoxylin and eosin (H&E), Luxol fast blue/cresyl violet and modified 

Bielschowsky silver impregnation. Selected sections were immunolabelled for Aβ, tau, α-synuclein 

and TDP43 to confirm AD.   

 

Non-Immunised AD cases (cAD) 

Twenty-seven AD cases provided by the South West Dementia Brain Bank (SWDBB, Bristol, UK) 

were identified and used as a control unimmunised AD cohort (supplementary Table 1). All cAD cases 

had a clinical diagnosis of AD made during life by an experienced clinician, a Mini-Mental State 

Examination score of <17 prior to death and satisfied post-mortem neuropathological Consensus 

Criteria for Alzheimer’s disease (20). The post-mortem delay was between 9 and 110 hours (mean 39 

hours, median 26 hours). The immunised and control AD cases were matched as closely as possible 

for age, gender, duration of dementia and APOE genotype (Table 1). The SWDBB tissue was used 
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under the ethical approval from North Somerset and South Bristol Hampshire Local Research Ethics 

Committees (Reference No: REC 08/H0106/28+5). 

 

Immunohistochemistry  

Middle temporal gyrus, usually markedly affected by AD pathology, was investigated in this study. 

Four-µm sections of formalin-fixed paraffin-embedded tissue from iAD and cAD cases were 

immunolabelled together in batches to ensure comparability of staining.  

Primary antibodies and immunohistochemistry  

To evaluate the impact of active AN1792 immunisation on apoptotic and autophagic pathways, we 

explored by immunohistochemistry the expression of the following pro-apoptotic proteins: GSK3βtyr216 

(polyclonal rabbit anti-phosphorylated GSK3βtyr216, #ab75745, Abcam) (6, 37), neuron-specific 

activator of cyclin-dependent kinase 5 with its activator p35 (C-19 polyclonal rabbit anti-Cdk5/p35, 

#sc-820, Santa Cruz) (12, 42), phosphorylated c-Jun N-terminal kinase (monoclonal rabbit anti-pJNK 

Thr183/Tyr185, clone 81E11, #4668, Cell Signaling) (18, 45), p53 (monoclonal mouse anti-p53, clone 

DO-1, #sc-126, Santa Cruz) (8), and a-casp3 (polyclonal rabbit anti-activated caspase 3 (Asp175), # 

9661, Cell Signaling) (15, 40, 41); and of the autophagic proteins ATG5 (initial step) (polyclonal 

rabbit anti-ATG5, #AP1812b, Abgent) and microtubule-associated protein light chain LC3-II (a 

marker of the final stage reflecting efficient autophagic activity) (polyclonal rabbit anti- LC3-II, 

#AP1801a, Abgent) (21, 22, 28). The specificity of the antibodies pJNK (18), GSK3βtyr216 (1), and 

CDK5/p35 (21) was previously demonstrated. In order to demonstrate the specificity of the antibodies 

p53, ATG5 and LC3II, we performed western blot on human brain tissue homogenates.  

Immunohistochemistry was carried out by a standard method as previously described (1, 4, 5, 19, 30, 

34, 46). Biotinylated secondary antibodies, normal serum and avidin-biotin complex were from Vector 

Laboratories (Peterborough, UK). Immunodetection was performed using the avidin-biotin-peroxidase 

complex method (Vectastain Elite ABC, UK) with 3,3’-diaminobenzidine (DAB) as chromogen and 

0.05% hydrogen peroxide as substrate. All the sections were dehydrated before mounting in DePeX 

(BDH Laboratory Supplies, UK). Sections from which the primary antibody was omitted were 

included in each immunohistochemistry run. 
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Quantification of immunolabelling 

Quantification was performed blind to the identity of the cases. Thirty fields of cortical grey matter at 

objective magnification x20 were acquired for each case from the same anatomical regions in a zigzag 

sequence along the cortical ribbon to ensure that all cortical layers were represented. Slides were 

marked by the same neuropathologist to ensure consistency in the location of acquisition of the 

images. Protein 'load' defined as the percentage of the field immunopositive for the marker of interest 

was determined using ImageJ (developed by W.S. Rasband National Institutes of Health, Bethesda 

MD, USA, version 1.47g), as in our previous studies (1, 4, 5, 19, 34, 46). 

 

Statistical analysis 

The normality of distribution of each marker across the cohort was assessed by examination of 

quantile-quantile plots (not shown). Levels of each marker were compared between cAD and iAD 

cases in two-sample two-sided t-tests or non-parametric Mann-Whitney U-tests (depending on the 

normality of the data). In both groups, correlations were analysed by Pearson's or Spearman's test, 

depending on the normality of distribution of the markers. We analysed the correlation between the 

apoptosis and autophagy-associated markers and (i) indicators of disease severity and neuronal 

integrity as reported in our previous published studies as follows: Aβ42 load, pTau load, tangles density 

by image, dystrophic neurites, spongiosis, number neuronal NeuN+ density by image, neuritic 

curvature ratio assessed by neurofilament immunohistochemistry, phosphorylated (p)PKR (a marker 

of early neurodegeneration) (4, 19, 34, 46); and (ii) available clinical indicators of disease course and 

antibody response – duration of dementia, survival time after immunisation, age at death, mean and 

peak antibody level. The threshold for statistical significance was set at 5% for intergroup 

comparisons and 1% for correlations, as determined by use of SPSS 21.0.  
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RESULTS  

The immunolabelling of all of the antigens was neuronal, with additional labelling of glial cells for 

some proteins as described in Table 2. Of note, the immunolabelling of activated-caspase 3 was 

cytoplasmic with the nuclei of the stained neurons morphologically normal, without the karyorrhexis 

classically associated with apoptosis. 

The expression of all apoptotic kinases was significantly lower in iAD than cAD cases: a-casp3 load, 

P<0.001; Cdk5/p35 load, P=0.013; p53 load, P<0.001; GSK3βtyr216 load, P<0.01; and pJNK, P<0.001 

(Figure 1). Of the two autophagic markers examined, LC3-II load was significantly lower in iAD than 

cAD (P<0.001) while ATG5 load did not differ between the cohorts (P=0.130, Figure 1).  

The expression of apoptotic and autophagic markers was analysed for correlation with other aspects of 

AD pathology (Aβ42 load, pTau load, dystrophic neurite counts, spongiosis, NeuN+ neurons and 

curvature ratio) in the same anatomical region, and also with a range of clinical parameters (age, 

gender, age at death, dementia duration, peak antibody, survival time). We did not observe any 

modification in the distribution of the proteins between both cohorts except for the GSK3βtyr216, which 

was detected mainly in granulo-vacular degeneration (GVD) in the iAD group but not in the cAD 

group. To take account of possible variations in neuronal density, we also assessed the percentage of 

all neurons that was immunopositive for a-casp3. This confirmed the striking decrease in neuronal 

expression of a-casp3 in iAD compared with cAD (p<0.0001, data not shown).  

In the cAD group, a-casp3 load correlated positively with Aβ42 (r==0.561, P=0.005), and Cdk5/p35 

correlated positively with pGSK3βtyr216 (r==0.642, P<0.001) (Table 3). Comparison of present findings 

with the clinical data revealed positive correlations between p53 and age at death (r==0.564, P=0.003), 

and between LC3-II and dementia duration (r=0.691, P=0.001) (Table 3). 

Within the iAD cohort, a-casp3 and GSK3βtyr216 correlated positively with severity of spongiosis, a 

marker of neuropil degeneration (r=0.789, P=0.004 and r=0.761, P=0.007 respectively) (Table 2). 

ATG5 correlated negatively with Aβ42 load (r==-0.845, P=0.001) and positively with the curvature 

ratio (abnormal tortuosity of neuritic processes) (r==0.841, P=0.001) (Table 4). Cdk5/p35 correlated 
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positively with peak antibody titre (r=0.840, P<0.001) as well as with mean antibody titre (data not 

shown) (Table 4). 

No other correlation was observed in either group.  

 

DISCUSSION  

Our results suggest that active Aβ immunisation of AD patients modulates apoptosis and some 

autophagic cellular signals, causing downregulation of apoptotic proteins and reduction in the final 

stage of autophagy activity. The decrease of apoptotic protein expression after immunisation could 

have several explanations: 1) Downregulation of apoptosis was a consequence of removal of Aβ, 

consistent with several studies implicating Aβ-induced apoptosis in neuronal death in AD (6, 8). 2) 

The reduction in apoptotic proteins may simply reflect the accelerated loss of damaged neurons after 

immunotherapy, as previously reported by us (34), potentially leaving 'healthier' neurons less affected 

by AD pathophysiology. However, the small magnitude of neuronal loss after immunotherapy (about 

10%) could not be the sole explanation for the substantial decrease in apoptotic protein load (between 

65% and 85%), and analysis of the percentage of all neurons that was immunopositive for a-casp3 

confirmed the marked reduction in neuronal expression of this antigen in iAD. 3) Immunotherapy may 

itself down-regulate apoptotic proteins. Further studies are needed to clarify the cellular and molecular 

processes that underlie these findings. 

The effects of autophagic proteins are less clear-cut. The reduction in LC3II suggests downregulation 

of the later steps of autophagy, potentially explained by reduced metabolic requirement for autophagy 

or perhaps an aborted or dysfunctional autophagic process. Restrictions on tissue availability did not 

allow us to explore this mechanistically. Analysis in animal models may help to clarify the influence 

of immunotherapy on autophagy. 

 

The correlation between a-casp3 and Aβ42 in the cAD group, is in accordance with previous reports 

implicating Aβ42 in neuronal apoptosis (6, 15). The link between Cdk5/p35 with GSK3βtyr216 is also 
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consistent with previous studies implicating these proteins in the pathophysiology of AD, particularly 

in the phosphorylation of Tau protein (13, 23). 

Strikingly different associations were observed in the immunised cohort. The relationship between a-

casp3, GSK3βtyr216 loads and the severity of spongiosis, a marker of neuropil degeneration, strengthen 

the association between these pro-apoptotic proteins and the neuronal loss detected after immunisation 

(34). This may explain the absence of clinical amelioration in these patients (19). Due to the nature of 

the post-mortem study, investigating late-stage of the disease and treatment, we cannot exclude the 

possibility that immunotherapy may have induced an early acute apoptotic phase followed by a more 

quiescent phase several years after the treatment.  

 

The relationship between p53 expression and age at death in the control Alzheimer’s cohort is 

consistent with the documented association between apoptosis and increasing age (11). The increase in 

LC3-II with dementia duration may be part of a pro-survival adaptive response by neurons and glia to 

minimise neurodegeneration (14). After immunisation, the anti-Aβ immune response (mean and peak 

Aβ antibody titre) was strongly associated with Cdk5/p35 expression. Cdk5/p35 signalling is known to 

promote microglial phagocytosis of fibrillar Aβ (25), and the present data are in keeping with the 

enhanced Aβ clearance by phagocytic microglia in the immunised patients who developed an immune 

response (19, 35, 46). However, it should be noted that the highest Cdk5/p35 level in the immunised 

cohort was much lower than that in the control group, consistent with the down-regulation of 

microglial activation that occurs when Aβ has been completely removed (46).  

This study has some limitations, inherent in the use of post-mortem tissue. As previously reported (1, 

4, 5, 19, 30, 34, 46), the number of placebo immunisation cases from which brains could be obtained 

(n=1) was far too low to provide useful data for statistical analysis and thus our study used AD brains 

from patients who were not included in a protocol of immunotherapy, although they were matched as 

closely as possible to the immunised cohort. Furthermore, this was a retrospective observational study 

rather than a prospective experimental study, which limited the range of methodological approaches 

and the comparability of clinical findings. Because this was an end-stage study, it was not possible to 
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explore the temporal relationship between markers of apoptosis or autophagy and neuronal loss, and 

analysis was limited to assessment of the late-stage consequences of immunisation.  

In summary, in this unique human brain series from the first anti-Aβ42 trial, our results suggest that 

anti-Aβ42 immunisation downregulates the expression of several pro-apoptotic proteins in the brain. 

Whilst these changes might be expected to be beneficial, the absence of cognitive benefit suggests that 

they occur too late in the disease process or that other mechanisms are responsible for the neuronal 

death.  
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Abbreviations 

a-casp3    activated caspase 3 

AD     Alzheimer’s disease 

ATG5    autophagy-related gene 5 

Aβ     β-amyloid        

CDK5    cyclin dependent Kinase 5 

GSK3βtyr216    glycogen Synthetase Kinase 3 phosphorylated at tyrosine 216  

iAD     immunised Alzheimer’s Disease brains  

JNK     c-Jun N Terminal Kinase  

LC3    microtubule-associated protein light chain 3 

p53    tumor protein 53 

PKR     double-stranded RNA dependent protein kinase      

 iAD    immunised Alzheimer’s disease brains    

cAD    non-immunised Alzheimer’s disease brains   

pTau     phosphorylated tau 
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Table 1 Characteristics of the immunised (iAD) and non-immunised (cAD) Alzheimer’s disease cohorts 

 

ID case Gender Age Braak stage 

Dementia 

duration 

(years) 

APOE status 

Mean antibody 

response (ELISA 

units) 

Survival time from 

1st injection 

(months) 

Post-mortem 

delay (hours) 

         

iAD1 F 74 VI 6 3.4 1:119 20 48 

iAD2 M 83 V 11 3.3 <1:100 4 6 

iAD3 M 63 VI 6 3.3 <1:100 41 6 

iAD4 F 71 VI 10 3.3 1:4072 44 24 

iAD5 M 81 VI 7 3.4 1:1707 57 6 

iAD6 M 82 VI 6 3.4 1:4374 60 24 

iAD7 M 63 VI 10 3.4 1:6470 64 6 

iAD8 M 81 VI 11 4.4 1:491 63 ? 

iAD9 F 88 VI 11 3.3 1:137 86 24 

iAD10 M 88 VI 12 3.4 1:142 94 6 

iAD11 F 89 VI 15 3.4 1:142 111 ? 

iAD12 F 86 VI 13 4.4 <1:100 141 6 

iAD13 F 75 VI 19 ? 1:221 162 48 

cAD 

(n=28) 

15F:13M 63-88 V/VI 3-17 21ε4+:6 ε4- n/a n/a mean 39 

median 26 

n/a: non-applicable 

?: unknown 
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Table 2: Topographical distribution of the apoptotic and autophagic proteins.  

 

 
cAD Neurons Glial cells 

 Cytoplasm Nuclear Cytoplasm Nuclear 

a-casp3 + - + - 

Cdk5/p35 + - + - 

pJNK +  -            + - 

GSK3βtyr216 + + - - 

P53 + - - - 

LC3 + - +  - 

ATG5 + - - + 

 

 

 

 

iAD Neurons Glial cells 

 Cytoplasm Nuclear Cytoplasm Nuclear 

a-casp3 + - - - 

Cdk5/p35 + - + - 

pJNK + - - - 

GSK3βtyr216 +  + - - 

P53 + - - - 

LC3 + - - - 

ATG5 + - - + 
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Table 3: Results of correlation analyses within the non-immunized AD control group 

 

 pJNK Cdk5/p35 p53 a-casp3 GSK3βtyr216 ATG5 LC3-II 

Aβ42 r=0.141 

p=0.483 

r=-0.238 

p=0.232 

r=0.142 

p=0.497 
r=0.561** 

p=0.005 

r=-0.079 

p=0.696 

r=-0.173 

p=0.399 

r=-0.346 

p=0.090  

ptau r=-0.228 

p=0.252 

r=0.178 

p=0.374 

r=0.052 

p=0.804 

r=-0.224 

p=0.303 

r=0.365 

p=0.061 

r=-0.214 

p=0.295 

r=0.060 

p=0.777  

tangles r=-0.088 

p=0.662 

r=0.092 

p=0.648 

r=-0.254 

p=0.221 

r=-0.070 

p=0.750 

r=0.008 

p=0.970 

r=-0.387 

p=0.050 

r=-0.046 

p=0.828  

dystrophic neurites r=0.157 

p=0.433 

r=0.001 

p=0.998 

r=0.094 

p=0.655 

r=0.068 

p=0.758 

r=-0.010 

p=0.959 

r=-0.235 

p=0.248 

r=0.027 

p=0.898  

spongiosis r=-0.181 

p=0.365 

r=0.404 

p=0.037 

r=0.048 

p=0.818 

r=-0.327 

p=0.128 

r=0.166 

p=0.409 

r=0.231 

p=0.256 

r=0.084 

p=0.690  

NeuN r=0.008 

p=0.971 

r=-0.039 

p=0.860 

r=0.413 

p=0.063 

r=-0.118 

p=0.610 

r=0.361 

p=0.090 

r=0.232 

p=0.298 

r=0.160 

p=0.489  

NFP curvature ratio r=-0.042 

p=0.837 

r=0.180 

p=0.369 

r=0.182 

p=0.383 

r=-0.059 

p=0.790 

r=0.174 

p=0.384 

r=-0.055 

p=0.788 

r=0.134 

p=0.524  

pPKR r=-0.267 

p=0.178 

r=0.085 

p=0.673 

r=-0.081 

p=0.701 

r=0.094 

p=0.670 

r=0.337 

p=0.085 

r=0.110 

p=0.593 

r=-0.075 

p=0.723  

pJNK  r=0.426 

p=0.027 

r=0.055 

p=0.792 

r=0.177 

p=0.419 

r=0.311 

p=0.115 

r=-0.226 

p=0.266 

r=0.202 

p=0.334   

Cdk5/p35   r=0.277 

p=0.18 

r=-0.146 

p=0.505 

r=0.648** 

p<0.001 

r=-0.196 

p=0.338 

r=0.300 

p=0.144    

p53    r=0.172 

p=0.457 

r=0.280 

p=0.175 

r=-0.055 

p=0.795 

r=0.319 

p=0.120     

a-casp3     r=-0.136 

p=0.536 

r=-0.492 

p=0.020 

r=-0.157 

p=0.496      

GSK3βtyr216      r=-0.01 

p=0.927 

r=0.128 

p=0.542       

ATG5       r=-0.062 

p=0.770        

Age at death r=0.210 

p=0.294 

r=0.289 

p=0.144 
r=0.564** 

p=0.003 

r=0.389 

p=0.0670 

r=0.438 

p=0.022 

r=-0.287 

p=0.156 

r=0.220 

p=0.291 

Dementia duration r=0.057 

p=0.796 

r=0.372 

p=0.080 

r=0.388 

p=0.082 

r=-0.062 

p=0.795 

r=-0.008 

p=0.970 

r=0.049 

p=0.830 

r=0.691 

p=0.001 

 

Peak antibody 

r=0.033 

p=0.914 
r=0.840** 

p<0.001 

r=-0.175 

p=0.569 

r=-0.431 

p=0.142 

r=-0.284 

p=0.348 

r=0.459 

p=0.115 

r=-0.386 

p=0.193 

Survival time r=0.455 

p=0.119 

r=0.162 

p=0.590 

r=-0.077 

p=0.802 

r=0.252 

p=0.406 

r=0.446 

p=0.126 

r=0.280 

p=0.354 

r=0.568 

p=0.043 

 
Bold: ** correlation significant at the 0.01 level (2-tailed). 
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Table 4: Results of correlation analyses within the immunized AD control group 

 pJNK Cdk5/p35 p53 a-casp3 GSK3βtyr216 ATG5 LC3-II 

Aβ42 r=-0.237 
p=0.482 

r=-0.491 
p=0.125 

r=-0.361 
p=0.276 

r=0.413 
p=0.207 

r=0.324 
p=0.331 

r=-0.845** 

p=0.001 

r=0.484 
p=0.131 

ptau r=0.397 

p=0.226 

r=0.082 

p=0.811 

r=0.164 

p=0.629 

r=0.089 

p=0.794 

r=-0.231 

p=0.494 

r=0.036 

p=0.915 

r=-0.174 

p=0.610 

tangles r=0.301 
p=0.368 

r=0.464 
p=0.151 

r=-0.050 
p=0.883 

r=-0.089 
p=0.796 

r=-0.207 
p=0.541 

r=0.155 
p=0.650 

r=-0.507 
p=0.112 

dystrophic neurites r=0.037 

p=0.915 

r=-0.246 

p=0.466 

r=-0.165 

p=0.628 

r=0.667 

p=0.025 

r=0.654 

p=0.029 

r=-0.269 

p=0.424 

r=0.547 

p=0.082 

spongiosis r=0.479 

p=0.136 

r=0.009 

p=0.979 

r=-0.087 

p=0.800 
r=0.789** 

p=0.004 

r=0.761** 

p=0.007 

r=-0.055 

p=0.873 

r=0.128 

p=0.708 

NeuN r=0.662 

p=0.037 

r=-0.353 

p=0.318 

r=0.107 

p=0.769 

r=0.691 

p=0.027 

r=0.337 

p=0.340 

r=0.170 

p=0.638 

r=0.055 

p=0.880 

NFP curvature ratio r=0.448 

p=0.167 

r=0.377 

p=0.253 

r=0.194 

p=0.568 

r=-0.152 

p=0.656 

r=0.137 

p=0.687 
r=0.841** 

p=0.001 

r=-0.418 

p=0.201 

pPKR r=0.201 

p=0.577 

r=-0.564 

p=0.090 

r=0.213 

p=0.555 

r=0.297 

p=0.405 

r=0.258 

p=0.471 

r=-0.176 

p=0.627 

r=0.701 

p=0.024 

pJNK  r=0.11 

p=0.720 

r=0.083 

p=0.788 

r=0.534 

p=0.060 

r=0.078 

p=0.801 

r=0.529 

0 p=.063 

r=-0.300 

p=0.319 

Cdk5/p35   r=-0.223 

p=0.464 

r=-0.049 

p=0.873 

r=0.102 

p=0.739 

r=0.363 

p=0.223 

r=-0.342 

p=0.253 

p53    r=0.052 
p=0.865 

r=-0.233 
p=0.444 

r=0.165 
p=0.589 

r=0.268 
p=0.375 

a-casp3     r=0.546 
p=0.054 

r=-0.165 
p=0.590 

r=-0.069 
p=0.823 

GSK3βtyr216      r=-0.108 

p=0.726 

r=-0.218 

p=0.474 

ATG5       r=-0.303 
p=0.314 

Age at death r=0.512 

p=0.074 

r=-0.502 

p=0.08 

r=-0.029 

p=0.925 

r=-0.080 

p=0.795 

r=0.082 

p=0.791 

r=0.337 

p=0.261 

r=-0.262 

p=0.388 

Dementia duration r=0.119 

p=0.700 

r=-0.125 

p=0.684 

r=-0.297 

p=0.324 

r=0.134 

p=0.661 

r=0.178 

p=0.560 

r=0.008 

p=0.978 

r=-0.292 

p=0.333 

Peak antibody r=0.033 
p=0.914 

r=0.840** 

p<0.001 

r=-0.175 
p=0.569 

r=-0.431 
p=0.142 

r=-0.284 
p=0.348 

r=0.459 
p=0.115 

r=-0.386 
p=0.193 

Survival time r=0.455 
p=0.119 

r=0.162 
p=0.590 

r=-0.077 
p=0.802 

r=0.252 
p=0.406 

r=0.446 
p=0.126 

r=0.280 
p=0.354 

r=0.568 
p=0.043 

Bold: ** correlation significant at the 0.01 level (2-tailed). 
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Figure 1: On the left, illustration of the immunolabeling of pro-apoptotic and autophagic proteins as 
observed in Alzheimer's disease.  On the right, quantification of the proteins in the non-immunised AD (cAD) 
compared to immunised AD (iAD) cases showing a significant decrease in all apoptotic proteins and of LC3II 

after immunisation. Scale bar = 50µm.  
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