194 research outputs found

    Zoonoses under our noses.

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.One Health is an effective approach for the management of zoonotic disease in humans, animals and environments. Examples of the management of bacterial zoonoses in Europe and across the globe demonstrate that One Health approaches of international surveillance, information-sharing and appropriate intervention methods are required to successfully prevent and control disease outbreaks in both endemic and non-endemic regions. Additionally, a One Health approach enables effective preparation and response to bioterrorism threats.A.R.C. is supported by a BBSRC iCASE Studentship in partnership with the University of Exeter and the Defence Science and Technology Laboratory (Dstl) (Grand no.BB/M016404/1). S.R. is supported by the BBSRC grant number BB/N001591/1

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe dataset associated with this article is available in ORE at https://doi.org/10.24378/exe.3724The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, whilst DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologues of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologues in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied orthologue. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP, and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralogue most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.Biotechnology and Biological Sciences Research Council (BBSRC)DstlJohn Innes FoundationInnovate U

    Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression and bipolar disorder are associated with reduced neural plasticity and deficits in memory, attention and executive function. Drug treatments for these affective disorders have insufficient clinical effects in a large group and fail to reverse cognitive deficits. There is thus a need for more effective treatments which aid cognitive function. Erythropoietin (Epo) is involved in neuroplasticity and is a candidate for future treatment of affective disorders. The investigators have demonstrated that a single dose of Epo improves cognitive function and reduces neurocognitive processing of negative emotional information in healthy and depressed individuals similar to effects seen with conventional antidepressants. The current study adds to the previous findings by investigating whether repeated Epo administration has antidepressant effects in patients with treatment resistant depression and reverses cognitive impairments in these patients and in patients with bipolar disorder in remission.</p> <p>Methods/design</p> <p>The trial has a double-blind, placebo-controlled, parallel-group design. 40 patients with treatment-resistant major depression and 40 patients with bipolar disorder in remission are recruited and randomised to receive weekly infusions of Epo (Eprex; 40,000 IU) or saline (NaCl 0.9%) for 8 weeks. Randomisation is stratified for age and gender. The primary outcome parameters for the two studies are: depression severity measured with the Hamilton Depression Rating Scale 17 items (HDRS-17) <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> in study 1 and, in study 2, verbal memory measured with the Rey Auditory Verbal Learning Test (RAVLT) <abbrgrp><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp>. With inclusion of 40 patients in each study we obtain 86% power to detect clinically relevant differences between intervention and placebo groups on these primary outcomes.</p> <p>Trial registration</p> <p>The trial is approved by the Local Ethics Committee: H-C-2008-092, Danish Medicines Agency: 2612-4020, EudraCT: 2008-04857-14, Danish Data Agency: 2008-41-2711 and ClinicalTrials.gov: NCT 00916552.</p

    Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity

    Get PDF
    Background\ud The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.\ud \ud Results\ud 5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.\ud \ud Conclusions\ud Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC

    Pharmacological inhibition of MERTK induces in vivo retinal degeneration: a multimodal imaging ocular safety assessment

    Get PDF
    The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes

    What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

    Get PDF
    Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology
    corecore