30 research outputs found

    Determination of the Failure Susceptibility of a Flat Die used in Biomass Pelletizing Machines by means of FEA based Design Exploration

    Get PDF
    This paper focuses on a design analysis of a flat die used in an agricultural biomass pelletizing machine by considering its high pressure loading failure susceptibility. The pellet die is one of the key elements in a pelletizing machine, and the strength of the die plate has an important role on the pellet’s quality and producibility. In fact, higher compression ratio (CR - the ratio of effective length and the internal (press channel) diameter of a die orifice/hole) will provide denser pellets which is a desired phenomenon, however, if the compression pressure is too high or CR is not determined to compensate high pressures, the raw material may block the die and the die may experience deformation failure due to overloading. If the desire is to make high quality pellets with no die failure, optimum flat die hole/orifice design parameters should be used which can provide the best CR for a specific compression pressure. This is the core motivation of this research. In this study, Finite Element Analysis (FEA) based design exploration has been utilised for a sample single hole flat die with various die geometry parameters against various compression pressure values. Following the FEA design exploration undertaken, a response surface analysis (RSA) was carried out and then estimation models (empirical equations), which could be used to calculate parameters of the die hole/orifice against applied compression pressure and failure susceptibility based on structural stress and deformation, was described. The results gained from the RSA has indicated that the estimation models have high R2 values (higher than 98 %) which could be used for adequately predicting failure susceptibility indicators. In addition to this, FEM-based simulation print-outs have provided useful stress distribution visuals on the die against different compression pressure values. Most especially, the study has highlighted that a detailed structural optimisation study may be scheduled in order to obtain die geometry design parameters with a focus on the failure susceptibility

    Cellular phosphoinositides and the maturation of bluetongue virus, a non-enveloped capsid virus.

    Get PDF
    BACKGROUND: Bluetongue virus (BTV), a member of Orbivirus genus in the Reoviridae family is a double capsid virus enclosing a genome of 10 double-stranded RNA segments. A non-structural protein of BTV, NS3, which is associated with cellular membranes and interacts with outer capsid proteins, has been shown to be involved in virus morphogenesis in infected cells. In addition, studies have also shown that during the later stages of virus infection NS3 behaves similarly to HIV protein Gag, an enveloped viral protein. Since Gag protein is known to interact with membrane lipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] and one of the known binding partners of NS3, cellular protein p11 also interacts with annexin a PI(4,5)P2 interacting protein, this study was designed to understand the role of this negatively charged membrane lipid in BTV assembly and maturation. METHODS: Over expression of cellular enzymes that either depleted cells of PI(4,5)P2 or altered the distribution of PI(4,5)P2, were used to analyze the effect of the lipid on BTV maturation at different times post-infection. The production of mature virus particles was monitored by plaque assay. Microscopic techniques such as confocal microscopy and electron microscopy (EM) were also undertaken to study localization of virus proteins and virus particles in cells, respectively. RESULTS: Initially, confocal microscopic analysis demonstrated that PI(4,5)P2 not only co-localized with NS3, but it also co-localized with VP5, one of the outer capsid proteins of BTV. Subsequently, experiments involving depletion of cellular PI(4,5)P2 or its relocation demonstrated an inhibitory effect on normal BTV maturation and it also led to a redistribution of BTV proteins within the cell. The data was supported further by EM visualization showing that modulation of PI(4,5)P2 in cells indeed resulted in less particle production. CONCLUSION: This study to our knowledge, is the first report demonstrating involvement of PI(4,5)P2 in a non-enveloped virus assembly and release. As BTV does not have lipid envelope, this finding is unique for this group of viruses and it suggests that the maturation of capsid and enveloped viruses may be more closely related than previously thought

    Depositional architecture and sequence stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa

    No full text
    The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy

    Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill, Monte Ascensione succession (Peri-Adriatic basin, eastern central Italy)

    No full text
    corecore