4,925 research outputs found

    The cost of congenital heart-disease in children and adults: a model for multicenter assessment of price and practice variation

    Get PDF
    Objective: To assess the cost of congenital heart disease (CHD) and to assess whether practice pattern or price was more responsible for variation

    Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Get PDF
    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation

    Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant

    Get PDF
    Supernova remnants (SNRs) are believed to be the primary location of the acceleration of Galactic cosmic rays, via diffusive shock (Fermi) acceleration. Despite considerable theoretical work the precise details are still unknown, in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in, and affect the structure of, the SNR shocks. However, for the last ten years, X-ray observatories ASCA, and more recently Chandra, XMM-Newton, and Suzaku have made it possible to image the synchrotron emission at keV energies produced by cosmic-ray electrons accelerated in the SNR shocks. In this article, we describe a spatially-resolved spectroscopic analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the cutoff frequencies of electrons accelerated in the forward shock. We set upper limits on the electron diffusion coefficient and find locations where particles appear to be accelerated nearly as fast as theoretically possible (the Bohm limit).Comment: 18 pages, 5 figures. Accepted for publication in Nature Physics (DOI below), final version available week of August 28, 2006 at http://www.nature.com/nphy

    A closer look at chaotic advection in the stratosphere: part II: statistical diagnostics

    Get PDF
    Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics, transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concentration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory are made

    Singularities in the optical response of cuprates

    Full text link
    We argue that the detailed analysis of the optical response in cuprate superconductors allows one to verify the magnetic scenario of superconductivity in cuprates, as for strong coupling charge carriers to antiferromagnetic spin fluctuations, the second derivative of optical conductivity should contain detectable singularities at 2Δ+Δspin2\Delta +\Delta_{\rm spin}, 4Δ4\Delta, and 2Δ+2Δspin2\Delta+2\Delta_{\rm spin}, where Δ\Delta is the amplitude of the superconducting gap, and Δs\Delta_{s} is the resonance energy of spin fluctuations measured in neutron scattering. We argue that there is a good chance that these singularities have already been detected in the experiments on optimally doped YBCOYBCO.Comment: 6 pages, 4 figure

    An energy and resource efficient alkaline flocculation and sedimentation process for harvesting of Chromochloris zofingiensis biomass

    Get PDF
    Harvesting microalgal cultures is often energetically intensive and costly. To improve efficiencies, a two-step harvesting method utilising alkaline flocculation and sedimentation to pre-concentrate cultures can be used prior to centrifugation. When applied to the microalga Chromochloris zofingiensis, high rates of sedimentation (> 90%) were found at low concentrations of base (< 10 mM), with the addition of magnesium to the media (via NaOH/ MgSO4 or Ca(OH)2/Mg(OH)2) to form Mg(OH)2. The process was scaled to 180 L, where sedimentation was as efficient as that achieved at bench scale. Characterisation of the harvested biomass showed comparable com�position (following neutralisation of pH) to biomass recovered solely by centrifugation. The alternative two-step processes were assessed for environmental impacts and cost, which indicated that a two-step harvesting gen�erally performs better than centrifugation alone, but that the locally available electricity source is a critical parameter for optimal solutio

    Maternal care boosted by paternal imprinting in mammals.

    Get PDF
    In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring's Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene-two active alleles, one active allele (the extant state), and loss of function-show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, 'paternalised' dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals

    The effects of childbirth on the pelvic-floor

    Get PDF
    Basically, vaginal delivery is associated with the risk of pelvic floor damage. The pelvic floor sequelae of childbirth includes anal incontinence, urinary incontinence and pelvic organ prolapse. Pathophysiology, incidence and risk factors for the development of the respective problems are reviewed. Where possible, recommendations for reducing the risk of pelvic floor damage are given

    Model of Yield Response of Corn to Plant Population and Absorption of Solar Energy

    Get PDF
    Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha−1 and g plant−1) on plant population (plants m−2). Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L.) grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Ym (Mg ha−1) for maximum yield at high plant population and c (m2 plant−1) for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, xc = 1/c (plants m−2). The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of xc were very similar for the three field studies with the same crop species
    • …
    corecore