14 research outputs found

    An agent-based model to rural-urban migration analysis

    Full text link
    In this paper we analyze the rural-urban migration phenomena as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.Comment: 16 pages, 9 figure

    Rural-urban migration in d-dimensional lattices

    Full text link
    The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d=2 up to d=7. The localization of the agents in the lattice define their social neighborhood (rural or urban) not being related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d=6, 7).Comment: 9 pages, 7 figures, to be published in International Journal of Modern Physics C 1

    Electrically charged compact stars and formation of charged black holes

    Full text link
    We study the effect of electric charge in compact stars assuming that the charge distribution is proportional to the mass density. The pressure and the density of the matter inside the stars are large, and the gravitational field is intense. This indicates that electric charge and a strong electric field can also be present. The relativistic hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff equation, is modified in order to include electric charge. We perform a detailed numerical study of the effect of electric charge using a polytropic equation of state. We conclude that in order to see any appreciable effect on the phenomenology of the compact stars, the electric fields have to be huge (~ 10^{21} V/m), which implies that the total charge is Q ~ 10^{20} Coulomb. From the local effect of the forces experienced on a single charged particle, it is expected that each individual charged particle is quickly ejected from the star. This in turn produces a huge force imbalance, and the gravitational force overwhelms the repulsive Coulomb and fluid pressure forces. The star can then collapse to form a charged black hole before all the charge leaves the system.Comment: 10 pages, 9 figures, To appear in Phys Rev.

    An agent-based computational model of the spread of tuberculosis An agent-based computational model of the spread of tuberculosis

    No full text
    Abstract. In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed
    corecore