102 research outputs found

    Observations of quiet-time moderate midlatitude L-band scintillation in association with plasma bubbles

    Get PDF
    Observations of moderate night time amplitude scintillation on the GPS L1C/A signal were recorded at the midlatitude station of Nicosia, corresponding geographic latitude and longitude of 35.18˚N and 33.38˚E respectively, on a geomagnetically quiet day. The variations of slant total electron content (STEC) and amplitude scintillation index (S4) on the night of June 12, 2014, indicate the presence of electron density depletions accompanying scintillation occurrence. The estimated apparent horizontal drift velocity and propagation direction of the plasma depletions are consistent with those observed for the equatorial plasma bubbles, thus suggesting that the moderate amplitude L-band scintillation observed over Nicosia may be associated with the extension of such plasma bubbles. The L-band scintillation occurrence was concurrent with the observations of range spread F on the ionograms recorded by the digisonde at Nicosia. The height–time–intensity plot generated using the ionogram data also showed features which can be attributed to off-angle reflections from electron density depletions, thus corroborating the STEC observations. This observation suggests that the midlatitude ionosphere is more active even during geomagnetically quiet days than previously thought and that further studies are necessary. This is particularly relevant for the GNSS user community and related applications

    Estimation and analysis of multi-GNSS differential code biases using a hardware signal simulator

    Get PDF
    In ionospheric modeling, the differential code biases (DCBs) are a non-negligible error source, which are routinely estimated by the different analysis centers of the International GNSS Service (IGS) as a by-product of their global ionospheric analysis. These are, however, estimated only for the IGS station receivers and for all the satellites of the different GNSS constellations. A technique is proposed for estimating the receiver and satellites DCBs in a global or regional network by first estimating the DCB of one receiver set as reference. This receiver DCB is then used as a ‘known’ parameter to constrain the global ionospheric solution, where the receiver and satellite DCBs are estimated for the entire network. This is in contrast to the constraint used by the IGS, which assumes that the involved satellites DCBs have a zero mean. The ‘known’ receiver DCB is obtained by simulating signals that are free of the ionospheric, tropospheric and other group delays using a hardware signal simulator. When applying the proposed technique for Global Positioning System legacy signals, mean offsets in the order of 3 ns for satellites and receivers were found to exist between the estimated DCBs and the IGS published DCBs. It was shown that these estimated DCBs are fairly stable in time, especially for the legacy signals. When the proposed technique is applied for the DCBs estimation using the newer Galileo signals, an agreement at the level of 1–2 ns was found between the estimated DCBs and the manufacturer’s measured DCBs, as published by the European Space Agency, for the three still operational Galileo in-orbit validation satellites

    High-Performance Work Systems and Organizational Performance in Emerging Economies: Evidence from MNEs in Turkey

    Get PDF
    This study examines the association between the usage of high-performance work systems (HPWS) by subsidiaries of multinational enterprises (MNEs) in Turkey and employee and subsidiary level outcomes. The study is based on a survey of 148 MNE subsidiaries operating in Turkey. The results show that the usage of HPWS has a significant positive impact on employee effectiveness. However, their impact on employee skills and development, and organizational financial performance are far less clear. Our findings highlight the extent to which HWPS need to be adapted to take account of context-specific institutional realities. © 2014 Springer-Verlag Berlin Heidelberg

    Molecular dynamics simulation of humic substances

    Get PDF
    © 2014, Orsi. Humic substances (HS) are complex mixtures of natural organic material which are found almost everywhere in the environment, and particularly in soils, sediments, and natural water. HS play key roles in many processes of paramount importance, such as plant growth, carbon storage, and the fate of contaminants in the environment. While most of the research on HS has been traditionally carried out by conventional experimental approaches, over the past 20 years complementary investigations have emerged from the application of computer modeling and simulation techniques. This paper reviews the literature regarding computational studies of HS, with a specific focus on molecular dynamics simulations. Significant achievements, outstanding issues, and future prospects are summarized and discussed

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore