45 research outputs found

    Electron correlation energy in confined two-electron systems

    Full text link
    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05 - 10 a0. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z > 1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy

    Identification of orthologous regions associated with tissue growth under water-limited conditions

    Full text link
    Plant recovery from early season drought is related to the amount of biomass retained during stress and biomass production after the end of stress. Reduction in leaf expansion is one of the first responses to water deficit. It is assumed that the control of tissue development under water deficit contributes to traits such as early vigor, as well as maintenance of growth of reproductive organs. To dissect the underlying mechanisms controlling tissue expansion under water-limited conditions, we used a multilevel approach combining quantitative genetics and genomics. To identify orthologous genetic regions controlling tissue growth under water-limited conditions a series of QTL mapping and microarray gene expression studies were conducted in rice and maize. Results of differentially expressed genes from microarray experiments, QTLs and candidate genes related to growth in the different species are compared on consensus maps (within species) and then on synteny maps (between species), to identify common genetic regions between rice and maize

    Protocol for collection and separation of bone marrow mononuclear cells in Chlorocebus aethiops

    Full text link
    Abstract: Chlorocebus aethiops is a species of non-human primate frequently used in biomedical research. Some research involves this species as an experimental model for various diseases and possible treatment with stem cells. The bone marrow is one of the main sources of these cells and provides easy access. The aim of this study was to standardize the protocol of collection and separation of bone marrow in C. aethiops. Ten animals were submitted to puncture of bone marrow with access to the iliac crest and cell separation by density gradient. The bone marrow of C. aethiops had an average of 97% viability. From the results achieved, we can conclude that C. aethiops is an excellent model to obtain and isolate mononuclear cells from bone marrow, fostering several studies in the field of cell therapy
    corecore