116 research outputs found

    Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen

    Get PDF
    Cultivated plants belonging to the genus Prunus are globally widespread and for some countries, are economically important crops; and they play a key role in the composition of a landscape. Xylella fastidiosa is a key threat to plant health, and several Prunus species are heavily stressed by this pathogen, such as almond, peach, and plum; many strain types of different subspecies can cause severe diseases. This review highlights different approaches to managing epidemic events related to X. fastidiosa in stone fruit plants. In fact, in most new European and Asian outbreaks, almond is the main and very common host and peach, plum, apricot, and cherry are widespread and profitable crops for the involved areas. Various diseases associated with stone fruit plants show different degrees of severity in relation to cultivar, although investigations are still limited. The development and selection of tolerant and resistant cultivars and the study of resistance mechanisms activated by the plant against X. fastidiosa infections seem to be the best way to find long-term solutions aimed at making affected areas recover. In addition, observations in orchards severely affected by the disease can be essential for collecting tolerant or resistant materials within the local germplasm. In areas where the bacterium is not yet present, a qualitative-quantitative study on entomofauna is also important for the timely identification of potential vectors and for developing effective control strategies

    Role of glycosphingolipid SSEA-3 and FGF2 in the stemness and lineage commitment of multilineage differentiating stress enduring (MUSE) cells

    Get PDF
    Multilineage differentiating Stress Enduring (MUSE) cells are endogenous, stress-resistant stem cells, expressing pluripotency master genes and able to differentiate in cells of the three embryonic sheets. Stage-Specific Embryonic Antigen 3 (SSEA-3), a glycosphingolipid (GSL), is the marker for identifying MUSE cells and is used to isolate this population from mesenchymal stromal cells. GSLs modulate signal transduction by interacting with plasma membrane components. The growth factor FGF2, important for MUSE cells biology, may interact with GSLs. Specific cell surface markers represent an invaluable tool for stem cell isolation. Nonetheless their role, if any, in stem cell biology is poorly investigated. Functions of stem cells, however, depend on niche external cues, which reach cells through surface markers. We addressed the role of SSEA-3 in MUSE cell behaviour, trying to define whether SSEA-3 is just a marker or if it plays a functional role in this cell population by determining if it has any relationship with FGF2 activity

    Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli.</p> <p>Results</p> <p>To investigate this role further, we exposed wild type <it>Arabidopsis thaliana </it>plants and the double mutant <it>npq1lut2 </it>to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (<sup>1</sup>O<sub>2</sub>) accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by <sup>1</sup>O<sub>2 </sub>which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in <it>npq1lut2 </it>is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the <it>flu </it>mutant was the only biological system adopted to define the regulation of gene expression by <sup>1</sup>O<sub>2</sub>. In this work, we propose the use of mutants accumulating <sup>1</sup>O<sub>2 </sub>by mechanisms different from those activated in <it>flu </it>to better identify ROS signalling.</p> <p>Conclusions</p> <p>We propose that the lack of zeaxanthin and lutein leads to <sup>1</sup>O<sub>2 </sub>accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to <sup>1</sup>O<sub>2 </sub>accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are discussed.</p

    Muse stem cells can be isolated from stromal compartment of mouse bone marrow, adipose tissue, and ear connective tissue: A comparative study of their in vitro properties

    Get PDF
    The cells present in the stromal compartment of many tissues are a heterogeneous population containing stem cells, progenitor cells, fibroblasts, and other stromal cells. A SSEA3(+) cell subpopulation isolated from human stromal compartments showed stem cell properties. These cells, known as multilineage-differentiating stress-enduring (MUSE) cells, are capable of resisting stress and possess an excellent ability to repair DNA damage. We isolated MUSE cells from different mouse stromal compartments, such as those present in bone marrow, subcutaneous white adipose tissue, and ear connective tissue. These cells showed overlapping in vitro biological properties. The mouse MUSE cells were positive for stemness markers such as SOX2, OCT3/4, and NANOG. They also expressed TERT, the catalytic telomerase subunit. The mouse MUSE cells showed spontaneous commitment to differentiation in meso/ecto/endodermal derivatives. The demonstration that mul-tilineage stem cells can be isolated from an animal model, such as the mouse, could offer a valid alternative to the use of other stem cells for disease studies and envisage of cellular therapies

    Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress

    Get PDF
    Background: Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. Results: The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. Conclusions: This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat.A. Peremarti is supported by the AGROTECNIO Foundation. The support of the Efficient Use of Water Program of IRTA is acknowledged. This study was partially funded by MICINN (Spain) under projects AGL2009- 11187, AGL2012-37217 and RTA2009-00085-00, and by MIUR (Italy) under the project ISCOCEM. AP, DV, CR authors are part of the Centre CONSOLIDER INGENIO 2010 on Agrigenomics funded by the Spanish Ministry of Education and Science

    Timely Supplementation of Hydrogels Containing Sulfated or Unsulfated Chondroitin and Hyaluronic Acid Affects Mesenchymal Stromal Cells Commitment Toward Chondrogenic Differentiation

    Get PDF
    Mesenchymal stromal cells (MSCs) are currently used for cartilage cell therapy because of their well proven capacity to differentiate in chondrocytes. The advantage of MSC-based therapy is the possibility of producing a high number of chondrocytes for implants. The transplant procedure, however, has some limitations, since MSCs may produce non-functional chondrocytes. This limit has been challenged by cultivating MSC in media with hydrogels containing hyaluronic acid (HA), extractive chondroitin sulfate (CS), or bio-fermentative unsulphated chondroitin (BC) alone or in combination. Nevertheless, a clear study of the effect of glycosaminoglycans (GAGs) on chondrocyte differentiation is still lacking, especially for the newly obtained unsulfated chondroitin of biotechnological origin. Are these GAGs playing a role in the commitment of stem cells to chondrocyte progenitors and in the differentiation of progenitors to mature chondrocytes? Alternatively, do they have a role only in one of these biological processes? We evaluated the role of HA, CS, and – above all – BC in cell commitment and chondrocyte differentiation of MSCs by supplementing these GAGs in different phases of in vitro cultivation. Our data provided evidence that a combination of HA and CS or of HA and BC supplemented during the terminal in vitro differentiation and not during cell commitment of MSCs improved chondrocytes differentiation without the presence of fibrosis (reduced expression of Type I collagen). This result suggests that a careful evaluation of extracellular cues for chondrocyte differentiation is fundamental to obtaining a proper maturation process

    Tuber borchii Vitt. mycorrhiza protects Cistus creticus L. from heavy metal toxicity

    Get PDF
    Heavy metals (HMs), such as copper, zinc, lead, mercury and cadmium, are the most abundant and dangerous inorganic environmental pollutants. Growing pieces of evidence suggest that mycorrhizal fungi can alleviate metal toxicity in plants. In this study, we focused attention on the ectomycorrhizal (ECM) fungus Tuber borchii Vitt., which is widespread in Italy and is of great ecological interest because of the mutualistic associations and the advantages it provides to host plants. Seedlings of the Mediterranean shrub Cistus creticus L., mycorrhized and non mycorrhized with the ECM fungus 7: borchii, were treated with HMs (zinc, lead and chromium). HMs induced leaves' chlorosis in non mycorrhized seedlings; while no significant differencewas observed impigmentation of mycorrhized seedlings' leaves. This observation was confirmed by Euclidean Distance of color measurements in L*a*b* units from RGB digital images of leaves. The decrease in leaves pigmentation observed in HM treated non mycorrhized seedlings strongly correlated with a reduced expression of key genes associated with chlorophyll biosynthesis; instead, no significant variation of gene expression was detected in mycorrhized seedlings treated with HMs

    Influence of Bagging on the Development and Quality of Fruits

    Get PDF
    none8siFruit quality is certainly influenced by biotic and abiotic factors, and a main quality attribute is the external appearance of the fruit. Various possible agronomical approaches are able to regulate the fruit microenvironment and, consequently, improve fruit quality and market value. Among these, fruit bagging has recently become an integral part of fruits’ domestic and export markets in countries such as Japan, China, Korea Australia and the USA because it is a safe and ecofriendly technique to protect fruits from multiple stresses, preserving or improving the overall quality. Despite increasing global importance, the development of suitable bagging materials and, above all, their use in the field is quite laborious, so that serious efforts are required to enhance and standardize bagging material according to the need of the crops/fruits. This review provides information about the effects of bagging technique on the fruit aspect and texture, which are the main determinants of consumer choiceopenMuhammad Moaaz Ali; Raheel Anwar; Ahmed F. Yousef; Binqi Li; Andrea Luvisi; Luigi DE BELLIS; Alessio Aprile; Faxing ChenMoaaz Ali, Muhammad; Anwar, Raheel; Yousef, Ahmed F.; Li, Binqi; Luvisi, Andrea; DE BELLIS, Luigi; Aprile, Alessio; Chen, Faxin
    corecore