23 research outputs found

    Persistence of magnetic field driven by relativistic electrons in a plasma

    Full text link
    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma length confirm the experimental measurements. These results open new paths for the exploration and modelling of ultra high energy particle driven magnetic field generation in the laboratory

    Primary Health Care from the perception of women living in a rural area

    Get PDF
    AbstractOBJECTIVEUnderstanding the perception of women living in a rural area about the actions and services of Primary Health Care (PHC) in a municipality of southern Brazil, which is the only one regarded as predominantly rural.METHODA descriptive study of qualitative approach, carried out with women who lived in the countryside and required health services in the 15 days prior to collection.RESULTSThe results registered low fidelity to PHC attributes, focusing its functional axis on sickness, transforming the unit into small points of emergency care and a bureaucratic place where patients are referred to other types of services. The quality of service offered is compromised to offering quick, fragmented and unequal treatment in the rural context.CONCLUSIONThe findings of this study highlight the need for greater efforts in order to adequate the new care model in the development of appropriate actions as designated by PHC in the rural context studied

    α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice

    No full text
    Ana Paula L D’Almeida,1,* Maria T Pacheco de Oliveira,1,* Éverton T de Souza,1 Diego de Sá Coutinho,1 Bianca T Ciambarella,1 Cristiano R Gomes,1 Thatiana Terroso,2 Sílvia S Guterres,2 Adriana R Pohlmann,3 Patrícia MR Silva,1 Marco A Martins,1 Andressa Bernardi1 1Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; 2Pharmaceutical Sciences Post-Graduation Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; 3Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil *These authors contributed equally to this work Abstract: Acute respiratory distress syndrome (ARDS) is a severe clinical condition of respiratory failure due to an intense inflammatory response with different etiologies. Despite all efforts, therapy remains limited, and ARDS is still associated with high mortality and morbidity. Plants can provide a vast source of active natural products for the discovery of new drugs. α-bisabolol (α-bis), a constituent of the essential oil from chamomile, has elicited pharmacological interest. However, the molecule has some limitations to its biological application. This study was conducted to develop a drug delivery system using lipid-core nanocapsules (LNCs) to improve the anti-inflammatory effects of orally administered α-bis. α-bis-loaded LNCs (α-bis-LNCs) were prepared by interfacial deposition of poly(ε-caprolactone) and orally administered in a mouse model of ARDS triggered by an intranasal administration of lipopolysaccharide (LPS). We found that α-bis-LNCs (30, 50, and 100 mg kg-1) significantly reduced airway hyperreactivity (AHR), neutrophil infiltration, myeloperoxidase activity, chemokine levels (KC and MIP-2), and tissue lung injury 18 hours after the LPS challenge. By contrast, free α-bis failed to modify AHR and neutrophil accumulation in the bronchoalveolar lavage effluent and lung parenchyma and inhibited elevation in the myeloperoxidase and MIP-2 levels only at the highest dose. Furthermore, only α-bis-LNCs reduced LPS-induced changes in mitogen-activated protein kinase signaling, as observed by a significant reduction in phosphorylation levels of ERK1/2, JNK, and p38 proteins. Taken together, our results clearly show that by using LNCs, α-bis was able to decrease LPS-induced inflammation. These findings may be explained by the robust increase of α-bis concentration in the lung tissue that was achieved by the LNCs. Altogether, these results indicate that α-bis-LNCs should further be investigated as a potential alternative for the treatment of ARDS. Keywords: acute respiratory distress syndrome, nanotechnology, drug delivery, pulmonary inflammation, α-bisabolol, anti-inflammatory effect
    corecore