4 research outputs found
Optimizing COVID-19 surveillance in long-term care facilities: a modelling study
This work resulted from the MOD-COV Project (Modelling of the hOspital Dissemination of SARS-CoV-2), a collaboration between the Institut Pasteur, the Conservatoire Nationale des Arts et Métiers, and the AVIESAN/REACTing working group “Modelling SARS-CoV-2 dissemination in healthcare settings”, whose members we thank (Niccolo Buetti, Christian Brun-Buisson, Sylvie Burban, Simon Cauchemez, Guillaume Chelius, Anthony Cousien, Pascal Crepey, Vittoria Colizza, Christel Daniel, Aurélien Dinh, Pierre Frange, Eric Fleury, Antoine Fraboulet, Marie-Paule Gustin, Lidia Kardas-Sloma, Elsa Kermorvant, Jean Christophe Lucet, Chiara Poletto, Rodolphe Thiebaut, Sylvie van der Werf, Philippe Vanhems, Linda Wittkop, Jean-Ralph Zahar).We also thank the i-Bird Study Group (Anne Sophie Alvarez, Audrey Baraffe, Mariano Beiró, Inga Bertucci, Pierre-Yves Boëlle, Camille Cyncynatus, Florence Dannet, Marie Laure Delaby, Pierre Denys, Matthieu Domenech de Cellès, Eric Fleury, Antoine Fraboulet, Jean-Louis Gaillard, Boris Labrador, Jennifer Lasley, Christine Lawrence, Judith Legrand, Odile Le Minor, Caroline Ligier, Lucie Martinet, Karine Mignon, Catherine Sacleux, Jérôme Salomon, Thomas Obadia, Marie Perard, Laure Petit, Laeticia Remy, Anne Thiebaut, Damien Thomas, Philippe Tronchet, Isabelle Villain), as well as Jacob Barrett for helpful discussion.International audienceBackground: Long-term care facilities (LTCFs) are vulnerable to outbreaks of coronavirus disease 2019 (COVID-19). Timely epidemiological surveillance is essential for outbreak response, but is complicated by a high proportion of silent (non-symptomatic) infections and limited testing resources.Methods: We used a stochastic, individual-based model to simulate transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along detailed inter-individual contact networks describing patient-staff interactions in a real LTCF setting. We simulated distribution of nasopharyngeal swabs and reverse transcriptase polymerase chain reaction (RT-PCR) tests using clinical and demographic indications and evaluated the efficacy and resource-efficiency of a range of surveillance strategies, including group testing (sample pooling) and testing cascades, which couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing.Results: In the baseline scenario, randomly introducing a silent SARS-CoV-2 infection into a 170-bed LTCF led to large outbreaks, with a cumulative 86 (95% uncertainty interval 6-224) infections after 3 weeks of unmitigated transmission. Efficacy of symptom-based screening was limited by lags to symptom onset and silent asymptomatic and pre-symptomatic transmission. Across scenarios, testing upon admission detected just 34-66% of patients infected upon LTCF entry, and also missed potential introductions from staff. Random daily testing was more effective when targeting patients than staff, but was overall an inefficient use of limited resources. At high testing capacity (> 10 tests/100 beds/day), cascades were most effective, with a 19-36% probability of detecting outbreaks prior to any nosocomial transmission, and 26-46% prior to first onset of COVID-19 symptoms. Conversely, at low capacity (< 2 tests/100 beds/day), group testing strategies detected outbreaks earliest. Pooling randomly selected patients in a daily group test was most likely to detect outbreaks prior to first symptom onset (16-27%), while pooling patients and staff expressing any COVID-like symptoms was the most efficient means to improve surveillance given resource limitations, compared to the reference requiring only 6-9 additional tests and 11-28 additional swabs to detect outbreaks 1-6 days earlier, prior to an additional 11-22 infections.Conclusions: COVID-19 surveillance is challenged by delayed or absent clinical symptoms and imperfect diagnostic sensitivity of standard RT-PCR tests. In our analysis, group testing was the most effective and efficient COVID-19 surveillance strategy for resource-limited LTCFs. Testing cascades were even more effective given ample testing resources. Increasing testing capacity and updating surveillance protocols accordingly could facilitate earlier detection of emerging outbreaks, informing a need for urgent intervention in settings with ongoing nosocomial transmission
Optimizing COVID-19 surveillance in long-term care facilities: a modelling study
Background: Long-term care facilities (LTCFs) are vulnerable to outbreaks of coronavirus disease 2019 (COVID-19). Timely epidemiological surveillance is essential for outbreak response, but is complicated by a high proportion of silent (non-symptomatic) infections and limited testing resources.
Methods: We used a stochastic, individual-based model to simulate transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along detailed inter-individual contact networks describing patient-staff interactions in a real LTCF setting. We simulated distribution of nasopharyngeal swabs and reverse transcriptase polymerase chain reaction (RT-PCR) tests using clinical and demographic indications and evaluated the efficacy and resource-efficiency of a range of surveillance strategies, including group testing (sample pooling) and testing cascades, which couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing.
Results: In the baseline scenario, randomly introducing a silent SARS-CoV-2 infection into a 170-bed LTCF led to large outbreaks, with a cumulative 86 (95% uncertainty interval 6–224) infections after 3 weeks of unmitigated transmission. Efficacy of symptom-based screening was limited by lags to symptom onset and silent asymptomatic and pre-symptomatic transmission. Across scenarios, testing upon admission detected just 34–66% of patients infected upon LTCF entry, and also missed potential introductions from staff. Random daily testing was more effective when targeting patients than staff, but was overall an inefficient use of limited resources. At high testing capacity (> 10 tests/100 beds/day), cascades were most effective, with a 19–36% probability of detecting outbreaks prior to any nosocomial transmission, and 26–46% prior to first onset of COVID-19 symptoms. Conversely, at low capacity (
Conclusions: COVID-19 surveillance is challenged by delayed or absent clinical symptoms and imperfect diagnostic sensitivity of standard RT-PCR tests. In our analysis, group testing was the most effective and efficient COVID-19 surveillance strategy for resource-limited LTCFs. Testing cascades were even more effective given ample testing resources. Increasing testing capacity and updating surveillance protocols accordingly could facilitate earlier detection of emerging outbreaks, informing a need for urgent intervention in settings with ongoing nosocomial transmission.</p
Clinical Characteristics, Care Trajectories and Mortality Rate of SARS-CoV-2 Infected Cancer Patients: A Multicenter Cohort Study
International audienceBackground: COVID-19 may be more frequent and more severe in cancer patients than in other individuals. Our aims were to assess the rate of COVID-19 in hospitalized cancer patients, to describe their demographic characteristics, clinical features and care trajectories, and to assess the mortality rate. Methods: This multicenter cohort study was based on the Electronic Health Records of the Assistance Publique-Hôpitaux de Paris (AP-HP). Cancer patients with a diagnosis of COVID-19 between 3 March and 19 May 2020 were included. Main outcome was all-cause mortality within 30 days of COVID-19 diagnosis. Results: A total of 29,141 cancer patients were identified and 7791 (27%) were tested for SARS-CoV-2. Of these, 1359 (17%) were COVID-19-positive and 1148 (84%) were hospitalized; 217 (19%) were admitted to an intensive care unit. The mortality rate was 33% (383 deaths). In multivariate analysis, mortality-related factors were male sex (aHR = 1.39 [95% CI: 1.07–1.81]), advanced age (78–86 y: aHR = 2.83 [95% CI: 1.78–4.51] vs. 20 ng/mL (aHR = 2.20 [95% CI: 1.70–2.86]). Primary brains tumors (aHR = 2.19 [95% CI: 1.08–4.44]) and lung cancer (aHR = 1.66 [95% CI: 1.02–2.70]) were associated with higher mortality. Risk of dying was lower among patients with metabolic comorbidities (aHR = 0.65 [95% CI: 0.50–0.84]). Conclusions: In a hospital-based setting, cancer patients with COVID-19 had a high mortality rate. This mortality was mainly driven by age, sex, number of comorbidities and presence of inflammation. This is the first cohort of cancer patients in which metabolic comorbidities were associated with a better outcome
Observational study of haloperidol in hospitalized patients with COVID-19
International audienceBackground: Haloperidol, a widely used antipsychotic, has been suggested as potentially useful for patients with COVID-19 on the grounds of its in-vitro antiviral effects against SARS-CoV-2, possibly through sigma-1 receptor antagonist effect.Methods: We examined the associations of haloperidol use with intubation or death and time to discharge home among adult patients hospitalized for COVID-19 at Assistance Publique-Hôpitaux de Paris (AP-HP) Greater Paris University hospitals. Study baseline was defined as the date of hospital admission. The primary endpoint was a composite of intubation or death and the secondary endpoint was discharge home among survivors in time-to-event analyses. In the primary analyses, we compared these two outcomes between patients receiving and not receiving haloperidol using univariate Cox regression models in matched analytic samples based on patient characteristics and other psychotropic medications. Sensitivity analyses included propensity score analyses with inverse probability weighting and multivariable Cox regression models.Results: Of 15,121 adult inpatients with a positive COVID-19 PT-PCR test, 39 patients (0.03%) received haloperidol within the first 48 hours of admission. Over a mean follow-up of 13.8 days (SD = 17.9), 2,024 patients (13.4%) had a primary end-point event and 10,179 patients (77.6%) were discharged home at the time of study end on May 1st. The primary endpoint occurred in 9 patients (23.1%) who received haloperidol and 2,015 patients (13.4%) who did not. The secondary endpoint of discharge home occurred in 16 patients (61.5%) who received haloperidol and 9,907 patients (85.8%) who did not. There were no significant associations between haloperidol use and the primary (HR, 0.80; 95% CI, 0.39 to 1.62, p = 0.531) and secondary (HR, 1.30; 95% CI, 0.74 to 2.28, p = 0.355) endpoints. Results were similar in multiple sensitivity analyses.Conclusion: Findings from this multicenter observational study suggest that haloperidol use prescribed at a mean dose of 4.5 mg per day (SD = 5.2) for a mean duration of 8.4 days (SD = 7.2) may not be associated with risk of intubation or death, or with time to discharge home, among adult patients hospitalized for COVID-19