23 research outputs found

    Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An <it>in silico </it>approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin.</p> <p>Results</p> <p>Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide). Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100%) conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2.</p> <p>Conclusions</p> <p>The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was significantly higher in contrast to its conservancy in HCV genotype 1 and 2. Despite of the lower conservancy in genotype 1 and 2, all the predicted epitopes have important implications in diagnostics as well as CTL-based rational vaccine design, effective for most population of the world and especially the Pakistani Population.</p

    PepDist: A New Framework for Protein-Peptide Binding Prediction based on Learning Peptide Distance Functions

    Get PDF
    BACKGROUND: Many different aspects of cellular signalling, trafficking and targeting mechanisms are mediated by interactions between proteins and peptides. Representative examples are MHC-peptide complexes in the immune system. Developing computational methods for protein-peptide binding prediction is therefore an important task with applications to vaccine and drug design. METHODS: Previous learning approaches address the binding prediction problem using traditional margin based binary classifiers. In this paper we propose PepDist: a novel approach for predicting binding affinity. Our approach is based on learning peptide-peptide distance functions. Moreover, we suggest to learn a single peptide-peptide distance function over an entire family of proteins (e.g. MHC class I). This distance function can be used to compute the affinity of a novel peptide to any of the proteins in the given family. In order to learn these peptide-peptide distance functions, we formalize the problem as a semi-supervised learning problem with partial information in the form of equivalence constraints. Specifically, we propose to use DistBoost [1,2], which is a semi-supervised distance learning algorithm. RESULTS: We compare our method to various state-of-the-art binding prediction algorithms on MHC class I and MHC class II datasets. In almost all cases, our method outperforms all of its competitors. One of the major advantages of our novel approach is that it can also learn an affinity function over proteins for which only small amounts of labeled peptides exist. In these cases, our method's performance gain, when compared to other computational methods, is even more pronounced. We have recently uploaded the PepDist webserver which provides binding prediction of peptides to 35 different MHC class I alleles. The webserver which can be found at is powered by a prediction engine which was trained using the framework presented in this paper. CONCLUSION: The results obtained suggest that learning a single distance function over an entire family of proteins achieves higher prediction accuracy than learning a set of binary classifiers for each of the proteins separately. We also show the importance of obtaining information on experimentally determined non-binders. Learning with real non-binders generalizes better than learning with randomly generated peptides that are assumed to be non-binders. This suggests that information about non-binding peptides should also be published and made publicly available

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease

    Get PDF
    An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis

    Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations.</p> <p>Results</p> <p>We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), <it>DRA </it>and <it>DQA</it>, in the genus <it>Equus </it>with the addition of novel alleles identified in plains zebra (<it>E. quagga</it>, formerly <it>E. burchelli</it>). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, <it>DRA </it>allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the <it>DQA </it>locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (<it>d</it><sub>N</sub><it>/d</it><sub>S</sub>) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (<it>d</it><sub>N </sub><<it>d</it><sub>S</sub>). However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the <it>DQA</it>, supported the hypothesis of positive selection acting on specific sites.</p> <p>Conclusions</p> <p>Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the <it>DQA</it>, positive selection was occurring at antigen binding sites, suggesting that a few selected residues may play a significant role in equid immune function. Future studies in natural equid populations will be valuable for understanding the functional significance of the uniquely diverse <it>DRA </it>locus and for elucidating the mechanism maintaining diversity at these MHC loci.</p

    High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations

    No full text
    Abstract Background Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. Results We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. Conclusions High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates
    corecore