49 research outputs found

    Schizophrenia polygenic risk predicts general cognitive deficit but not cognitive decline in healthy older adults

    Get PDF
    There has been a long argument over whether schizophrenia is a neurodegenerative disorder associated with progressive cognitive impairment. Given high heritability of schizophrenia, ascertaning if genetic susceptibility to schizophrenia is also associated with cognitive decline in healthy people would support the view that schizophrenia leads to an accelerated cognitive decline. Using the population representative sample of 6817 adults aged >50 years from the English Longitudinal Study of Ageing, we investigated associations between the biennial rate of decline in cognitive ability and the schizophrenia polygenic score (SZ-PGS) during the 10-year follow-up period. SZ-PGS was calculated based on summary statistics from the Schizophrenia Working Group of the Psychiatric Genomics Consortium. Cognition was measured sequentially across four time points using verbal memory and semantic fluency tests. The average baseline verbal memory was 10.4 (SD = 3.4) and semantic fluency was 20.7 (SD = 6.3). One standard deviation (1-SD) increase in SZ-PGS was associated with lower baseline semantic fluency (β = −0.25, 95%CI = −0.40 to −0.10, p = 0.002); this association was significant in men (β = −0.36, 95%CI = −0.59 to −0.12, p = 0.003) and in those who were aged 60–69 years old (β = −0.32, 95%CI = −0.58 to −0.05, p = 0.019). Similarly, 1-SD increase in SZ-PGS was associated with lower verbal memory score at baseline in men only (β = −0.12, 95%CI = −0.23 to −0.01, p = 0.040). However, SZ-PGS was not associated with a greater rate of decline in these cognitive domains during the 10-year follow-up. Our findings highlight that while genetic susceptibility to schizophrenia conveys developmental cognitive deficit, it is not associated with an ongoing cognitive decline, at least in later life. These results do not support the neo-Kraepelinian notion of schizophrenia as a genetically determined progressively deteriorating brain disease

    The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.</p> <p>Results</p> <p>Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus <it>Trichoderma reesei </it>(anamorph of <it>Hypocrea jecorina</it>) by profiling transcription in a wild-type and a delta-<it>cre1 </it>mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.</p> <p>Conclusions</p> <p>Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.</p

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction

    No full text
    In response to alkaline ambient pH, the Aspergillus nidulans PacC transcription factor mediating pH regulation of gene expression is activated by proteolytic removal of a negative-acting C–terminal domain. We demonstrate interactions involving the ∼150 C–terminal PacC residues and two regions located immediately downstream of the DNA binding domain. Our data indicate two full-length PacC conformations whose relative amounts depend upon ambient pH: one ‘open’ and accessible for processing, the other ‘closed’ and inaccessible. The location of essential determinants for proteolytic processing within the two more upstream interacting regions probably explains why the interactions prevent processing, whereas the direct involvement of the C–terminal region in processing-preventing interactions explains why C–terminal truncating mutations result in alkalinity mimicry and pH-independent processing. A mutant PacC deficient in pH signal response and consequent processing behaves as though locked in the ‘closed’ form. Single-residue substitutions, obtained as mutations bypassing the need for pH signal transduction, identify crucial residues in each of the three interactive regions and overcome the processing deficiency in the ‘permanently closed’ mutant
    corecore