3,535 research outputs found

    Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks

    Get PDF
    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm—Left-Arm—Right-Hand—Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes

    Rectovaginal fistula following sexual intercourse.

    Get PDF
    Female genital fistula is an important feature of the developing countries gynecology. Most of the rectovaginal fistulae encountered in the tropics are due to obstetrics causes and genital malignancies. In developed countries, radiation injury and Crohn’s disease are also common etiological factors. Theindex case is reported to highlight the rare situation, where a 24-year old married nullipara sustained low rectovaginal fistula following normal coitus. She was later divorced by her husband

    Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles

    Get PDF
    We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELC

    Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries.

    Get PDF
    Stimulation of calcium-sensing receptors (CaSR) by increasing the external calcium concentration (Ca(2+)]o) induces endothelium-dependent vasorelaxation through nitric oxide (NO) production and activation of intermediate Ca(2+)-activated K(+) currents (IKCa) channels in rabbit mesenteric arteries. The present study investigates the potential role of heteromeric TRPV4-TRPC1 channels in mediating these CaSR-induced vascular responses. Immunocytochemical and proximity ligation assays showed that TRPV4 and TRPC1 proteins were expressed and co-localised at the plasma membrane of freshly isolated endothelial cells (ECs). In wire myography studies, increasing [Ca(2+)]o between 1 and 6mM induced concentration-dependent relaxations of methoxamine (MO)-induced pre-contracted tone, which were inhibited by the TRPV4 antagonists RN1734 and HC067047, and the externally-acting TRPC1 blocking antibody T1E3. In addition, CaSR-evoked NO production in ECs measured using the fluorescent NO indicator DAF-FM was reduced by RN1734 and T1E3. In contrast, [Ca(2+)]o-evoked perforated-patch IKCa currents in ECs were unaffected by RN1734 and T1E3. The TRPV4 agonist GSK1016790A (GSK) induced endothelium-dependent relaxation of MO-evoked pre-contracted tone and increased NO production, which were inhibited by the NO synthase inhibitor L-NAME, RN1734 and T1E3. GSK activated 6pS cation channel activity in cell-attached patches from ECs which was blocked by RN1734 and T1E3. These findings indicate that heteromeric TRPV4-TRPC1 channels mediate CaSR-induced vasorelaxation through NO production but not IKCa channel activation in rabbit mesenteric arteries. This further implicates CaSR-induced pathways and heteromeric TRPV4-TRPC1 channels in regulating vascular tone

    Quantum Spacetimes in the Year 1

    Get PDF
    We review certain emergent notions on the nature of spacetime from noncommutative geometry and their radical implications. These ideas of spacetime are suggested from developments in fuzzy physics, string theory, and deformation quantisation. The review focuses on the ideas coming from fuzzy physics. We find models of quantum spacetime like fuzzy S4S^4 on which states cannot be localised, but which fluctuate into other manifolds like CP3 CP^3 . New uncertainty principles concerning such lack of localisability on quantum spacetimes are formulated.Such investigations show the possibility of formulating and answering questions like the probabilty of finding a point of a quantum manifold in a state localised on another one. Additional striking possibilities indicated by these developments is the (generic) failure of CPTCPT theorem and the conventional spin-statistics connection. They even suggest that Planck's `` constant '' may not be a constant, but an operator which does not commute with all observables. All these novel possibilities arise within the rules of conventional quantum physics,and with no serious input from gravity physics.Comment: 11 pages, LaTeX; talks given at Utica and Kolkata .Minor corrections made and references adde

    Modelling control of Schistosoma haematobium infection: predictions of the long-term impact of mass drug administration in Africa.

    Get PDF
    BACKGROUND: Effective control of schistosomiasis remains a challenging problem for endemic areas of the world. Given knowledge of the biology of transmission and past experience with mass drug administration (MDA) programs, it is important to critically evaluate the likelihood that MDA programs will achieve substantial reductions in Schistosoma prevalence. In implementing the World Health Organization Roadmap for Neglected Tropical Diseases it would useful for policymaking to model projections of the status of Schistosoma control in MDA-treated areas in the next 5-10 years. METHODS: Calibrated mathematical models were used to project the effects of different frequency and coverage of MDA for schistosomiasis haematobia control in present-day endemic communities, taking into account uncertainties of parasite biology and input data. The modeling approach in this analysis was the Stratified Worm Burden model developed in our earlier works, calibrated using data from longitudinal S. haematobium control trials in Kenya. RESULTS: Model-based simulations of MDA control in typical low-risk and higher-risk communities indicated that infection prevalence can be substantially reduced within 10 years only when there is a high degree of community participation (>70 %) with at least annual MDA. Significant risk for re-emergence of infection remains if MDA is suspended. CONCLUSIONS: In a stable (stationary) ecosystem, Schistosoma reproduction and transmission are sufficiently robust that the process of human infection continues, even under pressure from aggressive MDA. MDA alone is unlikely to interrupt transmission, and once mass treatment is suspended, the prevalence of human infection is likely to rebound to pre-control levels over a period of 25-30 years. MDA success in achieving very low levels of infection prevalence is highly dependent on treatment coverage and frequency within the local human population, and requires that both adults and children be included in drug delivery coverage. Ultimately, supplemental snail control and significant improvements in sanitation will be required to achieve full control of schistosomiasis by elimination of ongoing Schistosoma transmission

    Majorana Zero-modes and Topological Phases of Multi-flavored Jackiw-Rebbi model

    Get PDF
    Motivated by the recent Kitaev's K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that there exist Z\mathbf{Z} Majorana zero-modes hosted by the hedgehogs/t'Hooft-Polyakov monopoles, if the model has a T2=1T^2=1 time reversal symmetry. Guided by the K-theory results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2) doublet fermions in some co-dimensional one planes of the mass parameter space. It turns out we can see the existence of none or a single zero mode when the fermion doublet is only two. We then take a step further to consider four-fermion case and find there can be zero, one or two normalizable zero mode in some particular choices of mass matrices. Our results also indicate that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2) Witten anomaly.Comment: 29 pages, 3 figures; v2, typos correcte
    • 

    corecore