599 research outputs found
Building the Semantic Web of Things Through a Dynamic Ontology
The Web of Things (WoT) recently appeared as the latest evolution of the Internet of Things and, as the name suggests, requires that devices interoperate through the Internet using Web protocols and standards. Currently, only a few theoretical approaches have been presented by researchers and industry, to fight the fragmentation of the IoT world through the adoption of semantics. This further evolution is known as Semantic WoT and relies on a WoT implementation crafted on the technologies proposed by the Semantic Web stack. This article presents a working implementation of the WoT declined in its Semantic flavor through the adoption of a shared ontology for describing devices. In addition to that, the ontology includes patterns for dynamic interactions between devices, and therefore we define it as dynamic ontology. A practical example will give a proof of concept and overall evaluation, showing how the dynamic setup proposed can foster interoperability at information level allowing on the one hand smart discovery, enabling on the other hand orchestration and automatic interaction through the semantic information available
Colorless States in Perturbative QCD: Charmonium and Rapidity Gaps
We point out that an unorthodox way to describe the production of rapidity
gaps in deep inelastic scattering, recently proposed by Buchm\"uller and
Hebecker, suggests a description of the production of heavy quark bound states
which is in agreement with data. The approach questions the conventional
treatment of the color quantum number in perturbative QCD.Comment: 14 pages, plain Latex, 9 postscript figures included. Uses epsf.sty.
Postscript file of paper with figures also available at
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-919.ps.Z or at
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-919.ps.
C Minor: a Semantic Publish/Subscribe Broker for the Internet of Musical Things
Semantic Web technologies are increasingly used in the Internet of Things due to their intrinsic propensity to foster interoperability among heterogenous devices and services. However, some of the IoT application domains have strict requirements in terms of timeliness of the exchanged messages, latency and support for constrained devices. An example of these domains is represented by the emerging area of the Internet of MusicalThings.InthispaperweproposeCMinor,aCoAP-based semantic publish/subscribe broker speci\ufb01cally designed to meet the requirements of Internet of Musical Things applications, but relevant for any IoT scenario. We assess its validity through a practical use case
Electrophysiological evaluation of the peripheral and central pathways in patients with achondroplasia before and during a lower-limb lengthening procedure
In this paper we review the spectrum of spinal and peripheral nerve involvement secondary to achon- droplasia. Alongside conventional and computerised imaging techniques, electrophysiological investiga- tion may represent a useful, non-invasive approach in this clinical setting. Somatosensory evoked poten- tials (SEPs) and magnetic stimulation are valuable tools for studying spinal cord function. Neurophysio- logical abnormalities show a good correlation with the lesion level. Imaging techniques indicate that multiple malformation can affect the patient at the same time and SEPs help to determine the main site of involvement. Interestingly, these techniques are more sensitive than clinical evaluation in document- ing neurological impairment in patients with achon- droplasia prior to the manifestation of unmistakable signs. Callotasi has became a widely used and accept- ed procedure for limb lengthening. Extensive length- ening can be safely performed in patients with achon- droplasia once neurological impairment has been ruled out. In our experience, the presence of elec- trophysiological abnormalities calls for a compre- hensive surgical re-evaluation of the traditional pro- cedure, and sometimes exclusion of patients. Peripheral nerve involvement may occur during limb lengthening, and continuous nerve monitoring pro- vides useful insights into the pathophysiology of nerve damage
Exploring the thermodynamic limit of Hamiltonian models: convergence to the Vlasov equation
We here discuss the emergence of Quasi Stationary States (QSS), a universal
feature of systems with long-range interactions. With reference to the
Hamiltonian Mean Field (HMF) model, numerical simulations are performed based
on both the original -body setting and the continuum Vlasov model which is
supposed to hold in the thermodynamic limit. A detailed comparison
unambiguously demonstrates that the Vlasov-wave system provides the correct
framework to address the study of QSS. Further, analytical calculations based
on Lynden-Bell's theory of violent relaxation are shown to result in accurate
predictions. Finally, in specific regions of parameters space, Vlasov numerical
solutions are shown to be affected by small scale fluctuations, a finding that
points to the need for novel schemes able to account for particles
correlations.Comment: 5 pages, 3 figure
Phase transitions of quasistationary states in the Hamiltonian Mean Field model
The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is
studied in presence of an externally imposed magnetic field h. Lynden-Bell's
theory of violent relaxation is revisited and shown to adequately capture the
system dynamics, as revealed by direct Vlasov based numerical simulations in
the limit of vanishing field. This includes the existence of an
out-of-equilibrium phase transition separating magnetized and non magnetized
phases. We also monitor the fluctuations in time of the magnetization, which
allows us to elaborate on the choice of the correct order parameter when
challenging the performance of Lynden-Bell's theory. The presence of the field
h removes the phase transition, as it happens at equilibrium. Moreover, regions
with negative susceptibility are numerically found to occur, in agreement with
the predictions of the theory.Comment: 6 pages, 7 figure
Equilibrium and nonequilibrium properties of systems with long-range interactions
We briefly review some equilibrium and nonequilibrium properties of systems
with long-range interactions. Such systems, which are characterized by a
potential that weakly decays at large distances, have striking properties at
equilibrium, like negative specific heat in the microcanonical ensemble,
temperature jumps at first order phase transitions, broken ergodicity. Here, we
mainly restrict our analysis to mean-field models, where particles globally
interact with the same strength. We show that relaxation to equilibrium
proceeds through quasi-stationary states whose duration increases with system
size. We propose a theoretical explanation, based on Lynden-Bell's entropy, of
this intriguing relaxation process. This allows to address problems related to
nonequilibrium using an extension of standard equilibrium statistical
mechanics. We discuss in some detail the example of the dynamics of the free
electron laser, where the existence and features of quasi-stationary states is
likely to be tested experimentally in the future. We conclude with some
perspectives to study open problems and to find applications of these ideas to
dipolar media.Comment: 8 pages, 14 figures, Procs. of STATPHYS23, to be published on EPJ
A dynamical classification of the range of pair interactions
We formalize a classification of pair interactions based on the convergence
properties of the {\it forces} acting on particles as a function of system
size. We do so by considering the behavior of the probability distribution
function (PDF) P(F) of the force field F in a particle distribution in the
limit that the size of the system is taken to infinity at constant particle
density, i.e., in the "usual" thermodynamic limit. For a pair interaction
potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it
bounded} pair force, we show that P(F) converges continuously to a well-defined
and rapidly decreasing PDF if and only if the {\it pair force} is absolutely
integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to
this case as {\it dynamically short-range}, because the dominant contribution
to the force on a typical particle in this limit arises from particles in a
finite neighborhood around it. For the {\it dynamically long-range} case, i.e.,
a \leq d-1, on the other hand, the dominant contribution to the force comes
from the mean field due to the bulk, which becomes undefined in this limit. We
discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2)
P(F) may, in some cases, be defined in a weaker sense. This involves a
regularization of the force summation which is generalization of the procedure
employed to define gravitational forces in an infinite static homogeneous
universe. We explain that the relevant classification in this context is,
however, that which divides pair forces with a > d-2 (or a < d-2), for which
the PDF of the {\it difference in forces} is defined (or not defined) in the
infinite system limit, without any regularization. In the former case dynamics
can, as for the (marginal) case of gravity, be defined consistently in an
infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional
references, version to appear in J. Stat. Phy
Fine structure splittings of excited P and D states in charmonium
It is shown that the fine structure splittings of the and
excited states in charmonium are as large as those of the state if the
same is used. The predicted mass
GeV appears to be 120 MeV lower that the center of gravity of the
multiplet and lies below the threshold. Our value of
is approximately 80 MeV lower than that from the paper by Godfrey and Isgur
while the differences in the other masses are \la 20 MeV. Relativistic
kinematics plays an important role in our analysis.Comment: 12 page
- …