599 research outputs found

    Building the Semantic Web of Things Through a Dynamic Ontology

    Get PDF
    The Web of Things (WoT) recently appeared as the latest evolution of the Internet of Things and, as the name suggests, requires that devices interoperate through the Internet using Web protocols and standards. Currently, only a few theoretical approaches have been presented by researchers and industry, to fight the fragmentation of the IoT world through the adoption of semantics. This further evolution is known as Semantic WoT and relies on a WoT implementation crafted on the technologies proposed by the Semantic Web stack. This article presents a working implementation of the WoT declined in its Semantic flavor through the adoption of a shared ontology for describing devices. In addition to that, the ontology includes patterns for dynamic interactions between devices, and therefore we define it as dynamic ontology. A practical example will give a proof of concept and overall evaluation, showing how the dynamic setup proposed can foster interoperability at information level allowing on the one hand smart discovery, enabling on the other hand orchestration and automatic interaction through the semantic information available

    Colorless States in Perturbative QCD: Charmonium and Rapidity Gaps

    Full text link
    We point out that an unorthodox way to describe the production of rapidity gaps in deep inelastic scattering, recently proposed by Buchm\"uller and Hebecker, suggests a description of the production of heavy quark bound states which is in agreement with data. The approach questions the conventional treatment of the color quantum number in perturbative QCD.Comment: 14 pages, plain Latex, 9 postscript figures included. Uses epsf.sty. Postscript file of paper with figures also available at http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-919.ps.Z or at ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-919.ps.

    C Minor: a Semantic Publish/Subscribe Broker for the Internet of Musical Things

    Get PDF
    Semantic Web technologies are increasingly used in the Internet of Things due to their intrinsic propensity to foster interoperability among heterogenous devices and services. However, some of the IoT application domains have strict requirements in terms of timeliness of the exchanged messages, latency and support for constrained devices. An example of these domains is represented by the emerging area of the Internet of MusicalThings.InthispaperweproposeCMinor,aCoAP-based semantic publish/subscribe broker speci\ufb01cally designed to meet the requirements of Internet of Musical Things applications, but relevant for any IoT scenario. We assess its validity through a practical use case

    Electrophysiological evaluation of the peripheral and central pathways in patients with achondroplasia before and during a lower-limb lengthening procedure

    Get PDF
    In this paper we review the spectrum of spinal and peripheral nerve involvement secondary to achon- droplasia. Alongside conventional and computerised imaging techniques, electrophysiological investiga- tion may represent a useful, non-invasive approach in this clinical setting. Somatosensory evoked poten- tials (SEPs) and magnetic stimulation are valuable tools for studying spinal cord function. Neurophysio- logical abnormalities show a good correlation with the lesion level. Imaging techniques indicate that multiple malformation can affect the patient at the same time and SEPs help to determine the main site of involvement. Interestingly, these techniques are more sensitive than clinical evaluation in document- ing neurological impairment in patients with achon- droplasia prior to the manifestation of unmistakable signs. Callotasi has became a widely used and accept- ed procedure for limb lengthening. Extensive length- ening can be safely performed in patients with achon- droplasia once neurological impairment has been ruled out. In our experience, the presence of elec- trophysiological abnormalities calls for a compre- hensive surgical re-evaluation of the traditional pro- cedure, and sometimes exclusion of patients. Peripheral nerve involvement may occur during limb lengthening, and continuous nerve monitoring pro- vides useful insights into the pathophysiology of nerve damage

    Exploring the thermodynamic limit of Hamiltonian models: convergence to the Vlasov equation

    Full text link
    We here discuss the emergence of Quasi Stationary States (QSS), a universal feature of systems with long-range interactions. With reference to the Hamiltonian Mean Field (HMF) model, numerical simulations are performed based on both the original NN-body setting and the continuum Vlasov model which is supposed to hold in the thermodynamic limit. A detailed comparison unambiguously demonstrates that the Vlasov-wave system provides the correct framework to address the study of QSS. Further, analytical calculations based on Lynden-Bell's theory of violent relaxation are shown to result in accurate predictions. Finally, in specific regions of parameters space, Vlasov numerical solutions are shown to be affected by small scale fluctuations, a finding that points to the need for novel schemes able to account for particles correlations.Comment: 5 pages, 3 figure

    Phase transitions of quasistationary states in the Hamiltonian Mean Field model

    Get PDF
    The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is studied in presence of an externally imposed magnetic field h. Lynden-Bell's theory of violent relaxation is revisited and shown to adequately capture the system dynamics, as revealed by direct Vlasov based numerical simulations in the limit of vanishing field. This includes the existence of an out-of-equilibrium phase transition separating magnetized and non magnetized phases. We also monitor the fluctuations in time of the magnetization, which allows us to elaborate on the choice of the correct order parameter when challenging the performance of Lynden-Bell's theory. The presence of the field h removes the phase transition, as it happens at equilibrium. Moreover, regions with negative susceptibility are numerically found to occur, in agreement with the predictions of the theory.Comment: 6 pages, 7 figure

    Equilibrium and nonequilibrium properties of systems with long-range interactions

    Get PDF
    We briefly review some equilibrium and nonequilibrium properties of systems with long-range interactions. Such systems, which are characterized by a potential that weakly decays at large distances, have striking properties at equilibrium, like negative specific heat in the microcanonical ensemble, temperature jumps at first order phase transitions, broken ergodicity. Here, we mainly restrict our analysis to mean-field models, where particles globally interact with the same strength. We show that relaxation to equilibrium proceeds through quasi-stationary states whose duration increases with system size. We propose a theoretical explanation, based on Lynden-Bell's entropy, of this intriguing relaxation process. This allows to address problems related to nonequilibrium using an extension of standard equilibrium statistical mechanics. We discuss in some detail the example of the dynamics of the free electron laser, where the existence and features of quasi-stationary states is likely to be tested experimentally in the future. We conclude with some perspectives to study open problems and to find applications of these ideas to dipolar media.Comment: 8 pages, 14 figures, Procs. of STATPHYS23, to be published on EPJ

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy

    Fine structure splittings of excited P and D states in charmonium

    Get PDF
    It is shown that the fine structure splittings of the 23PJ2 ^3P_J and 33PJ3 ^3P_J excited states in charmonium are as large as those of the 13PJ1^3P_J state if the same αs(μ)0.36\alpha_s(\mu)\approx 0.36 is used. The predicted mass M(23P0)=3.84M(2 ^3P_0)=3.84 GeV appears to be 120 MeV lower that the center of gravity of the 23PJ2 ^3P_J multiplet and lies below the DDˉD\bar D^* threshold. Our value of M(23P0)M(2 ^3P_0) is approximately 80 MeV lower than that from the paper by Godfrey and Isgur while the differences in the other masses are \la 20 MeV. Relativistic kinematics plays an important role in our analysis.Comment: 12 page
    corecore