11 research outputs found

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines

    Susceptibility of Anopheles aquasalis and An. darlingi to Plasmodium vivax VK210 and VK247

    No full text
    The susceptibility of Anopheles aquasalis (F3 generation) and An. darlingi (F1 generation) to Plasmodium vivax circumsporozoite protein phenotypes from a limited number of blood samples of malaria patients in Belém, state of Pará, Brazil, was examined. A polymerase chain reaction was used to determine the P. vivax phenotypes in blood samples and the blood-fed infected mosquitoes were dissected and tested by ELISA. In all patient infections, more infected An. aquasalis and An. darlingi were positive for VK210 compared with VK247

    Ethnomedicine, phytochemistry and pharmacology of Calotropis procera and Tribulus terrestris

    No full text
    corecore