3,207 research outputs found

    Metabolic syndrome and its associated factors in patients with severe mental illness in Malaysia

    Get PDF
    Background: Mental illness is a huge public health issue. Patients with severe mental illness (SMI) are at risk of developing metabolic syndrome (MetS). Therefore, this cross-sectional study aimed to determine the associations between personal, clinical and lifestyle factors with MetS in patients with SMI. Materials and Methods: 151 patients attending psychiatric outpatient clinics in two government hospitals in Klang Valley participated in this study. The Mini International Neuropsychiatric Interview (MINI) was used to diagnose patients with SMI by a psychiatrist. MetS was defined based on the 2009 Joint Interim Statement (JIS) criteria. Information needed on socio-demographic background, clinical characteristics (types and duration of illness and medication), lifestyle factors (physical activity level, smoking behaviour and alcohol consumption) were collected through a face-to-face interview. Body weight, height, waist circumference, percentage of body fat and blood pressure were measured by the researchers. Blood test results were obtained from the medical records. Result: Nearly half of the respondents (48.3%) had MetS, in which it was higher among males (48.5%), married respondents (61.5%), older age group (66.7%) and schizophrenic patients (50.7%). Overweight (AOR=3.64, 95% CI=1.55-8.58) and obese (AOR=15.06, 95% CI=5.27-43.09) patients were more likely to develop MetS. Moreover, middle-aged and older patients were about 3 times (AOR=3.31, 95% CI=1.38-7.94) and 6 times (AOR=5.65, 95% CI=1.62-19.73), respectively, more likely to develop MetS compared to younger patients. Conclusion: This study demonstrated high prevalence of MetS among patients with SMI. It also highlighted the need of regular assessment of BMI among patients with SMI to prevent MetS

    ROBOT VISION: CALIBRATION OF WIDE-ANGLE LENS CAMERAS USING COLLINEARITY CONDITION AND K-NEAREST NEIGHBOUR REGRESSION

    Get PDF
    Visual perception is regularly used by humans and robots for navigation. By either implicitly or explicitly mapping the environment, ego-motion can be determined and a path of actions can be planned. The process of mapping and navigation are delicately intertwined; therefore, improving one can often lead to an improvement of the other. Both processes are sensitive to the interior orientation parameters of the camera system and mathematically modelling these systematic errors can often improve the precision and accuracy of the overall solution. This paper presents an automatic camera calibration method suitable for any lens, without having prior knowledge about the sensor. Statistical inference is performed to map the environment and localize the camera simultaneously. K-nearest neighbour regression is used to model the geometric distortions of the images. A normal-angle lens Nikon camera and wide-angle lens GoPro camera were calibrated using the proposed method, as well as the conventional bundle adjustment with self-calibration method (for comparison). Results showed that the mapping error was reduced from an average of 14.9 mm to 1.2 mm (i.e. a 92 % improvement) and 66.6 mm to 1.5 mm (i.e. a 98 % improvement) using the proposed method for the Nikon and GoPro cameras, respectively. In contrast, the conventional approach achieved an average 3D error of 0.9 mm (i.e. 94 % improvement) and 6 mm (i.e. 91 % improvement) for the Nikon and GoPro cameras, respectively. Thus, the proposed method performs more consistently, irrespective of the lens/sensor used: it yields results that are comparable to the conventional approach for normal-angle lens cameras, and it has the additional benefit of improving calibration results for wide-angle lens cameras

    Orbital textures and charge density waves in transition metal dichalcogenides

    Full text link
    Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are confined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the CDW within the two-dimensional TaS2-layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow to manipulate salient features of the electronic structure. Indeed, these orbital effects enable to switch the properties of 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultra-fast devices based on layered transition metal dichalcogenides

    Moment inversion problem for piecewise D-finite functions

    Full text link
    We consider the problem of exact reconstruction of univariate functions with jump discontinuities at unknown positions from their moments. These functions are assumed to satisfy an a priori unknown linear homogeneous differential equation with polynomial coefficients on each continuity interval. Therefore, they may be specified by a finite amount of information. This reconstruction problem has practical importance in Signal Processing and other applications. It is somewhat of a ``folklore'' that the sequence of the moments of such ``piecewise D-finite''functions satisfies a linear recurrence relation of bounded order and degree. We derive this recurrence relation explicitly. It turns out that the coefficients of the differential operator which annihilates every piece of the function, as well as the locations of the discontinuities, appear in this recurrence in a precisely controlled manner. This leads to the formulation of a generic algorithm for reconstructing a piecewise D-finite function from its moments. We investigate the conditions for solvability of the resulting linear systems in the general case, as well as analyze a few particular examples. We provide results of numerical simulations for several types of signals, which test the sensitivity of the proposed algorithm to noise

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Young people's uses of celebrity: Class, gender and 'improper' celebrity

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Discourse: Studies in the Cultural Politics of Education, 34(1), 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/01596306.2012.698865.In this article, we explore the question of how celebrity operates in young people's everyday lives, thus contributing to the urgent need to address celebrity's social function. Drawing on data from three studies in England on young people's perspectives on their educational and work futures, we show how celebrity operates as a classed and gendered discursive device within young people's identity work. We illustrate how young people draw upon class and gender distinctions that circulate within celebrity discourses (proper/improper, deserving/undeserving, talented/talentless and respectable/tacky) as they construct their own identities in relation to notions of work, aspiration and achievement. We argue that these distinctions operate as part of neoliberal demands to produce oneself as a ‘subject of value’. However, some participants produced readings that show ambivalence and even resistance to these dominant discourses. Young people's responses to celebrity are shown to relate to their own class and gender position.The Arts and Humanities Research Council, the British Academy, the Economic and Social Research Council, and the UK Resource Centre for Women in Science Engineering and Technology

    Graphene transistors are insensitive to pH changes in solution

    Full text link
    We observe very small gate-voltage shifts in the transfer characteristic of as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer is changed. This observation is in strong contrast to Si-based ion-sensitive FETs. The low gate-shift of a GFET can be further reduced if the graphene surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide layer is applied instead, the opposite happens. This suggests that clean graphene does not sense the chemical potential of protons. A GFET can therefore be used as a reference electrode in an aqueous electrolyte. Our finding sheds light on the large variety of pH-induced gate shifts that have been published for GFETs in the recent literature

    Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers

    Get PDF
    This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country

    Melt-Quenched Glasses of Metal–Organic Frameworks

    Get PDF
    Crystalline solids dominate the field of metal-organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal-ligand connectivity of crystalline MOFs, which connects their mechanical properties to their starting chemical composition. The transfer of functionality from crystal to glass points toward new routes to tunable, functional hybrid glasses.T.D.B. would like to thank Trinity Hall (University of Cambridge) for funding. We thank Diamond Light Source for access to beamline B18 (SP14249-1) that contributed to the results presented here. We thank Dr. Giannantonio Cibin and Dr. Stephen Parry for their assistance with the EXAFS measurements. F.B. thanks EPSRC (grant EP/M00869X/1) and the University of Liverpool for funding. O.K.F. gratefully acknowledges funding from the Army Research Office (project number W911NF-13-1-0229). S.A.T.R. is grateful for funding from the Natural Environment Research Council.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/jacs.5b1322
    corecore