557 research outputs found

    Acumulação diferencial de nutrientes por cinco cultivares de milho (Zea mays L.): I - acumulação de macronutrientes

    Get PDF
    The objective of the present work was to examine the differences in growth, yield, accumulation and transport of nutrients between the cultivars Agroceres 256, Agroceres 504, Centralmex, H-7974 and Piranão. The experiment was carried out in the municipality of Piracicaba, State of São Paulo, Brazil. The soil type was a sandy oxisol of medium fertility, expect for K which was low. The experimental set-up was a randon block design with four replications. Common cultivation practices were followed, and the fertilizer used consisted of 83 g of a formula: 30-120-70, per meter length at planting, and 33 g of the formula: 50-0-45 per meter length as dressing 22 days after germination. The plant population density was 50,000 per hectare. Plants were collected for analysis at 20 days after germination, and there after at intervals of 20 days up to 120 days. The plants were divided into "stems + leaves", tassels, and ears for chemical analysis of N, P, K, Ca, Mg and S. Conclusions: Growth - The cultivars produce maximum quantities of dry matter of 327 to 381 g per plant at the age of 100 to 106 days. - Differences between cultivars in terms of dry matter accumulation in the vegetative parts of the plant is not necessarily relate to the dry weight of the ear. Accumulation of nutrients - There are no differences in the quantity of N, P and K taken-up by the cultivars, although during the period of rapid growth some differences may appear. - Differences in the accumulation of Ca, Mg and S are detected when the quantities of these nutrients approach the maximum. The cultivar H-7974 presented the highest quantities of Ca and Mg where as Agroceres 504 was richest in S. - The maximum level of nutrients are attained in the following period in days: N (89-100); P (101 -120); K (58-66); Ca (75-94); Mg (100-120) and S (93-95). - The maximum quantities taken-up in mg/plant are:N (3,169-3,878);P (541-642); K (3,850-4,693); Ca (582-782); Mg (654-943); S (444-799). Yield - No differences were found between cultivars for grain production. Transport of nutrients - The re were no differences in the amounts of nutrients in the grain between cultivars. - The transport of nutrients into the ears of the different cultivars are the following order (per hectare harvested, 50,000 plants): N (111-143 kg); P (22-30 kg); K (30-45 kg); Ca (0.7-1.1 kg); Mg (10-12 kg) and S (9-13 kg).No presente trabalho, os autores apresentam os resultados de um ensaio de campo empregando os cultivares Agroceres 256, Agroceres 504, Centralmex, H-7974 e Piranão no sentido de aquilatar diferenças no crescimento, produção e acumulação e exportação de nutrientes. O ensaio foi conduzido num regossol de fertilidade mediana, exceto em relação ao K que é baixo, situado no Município de Piracicaba, SP. O delineamento experimental utilizado foi de blocos ao acaso com 4 repetições. Foram seguidas as práticas culturais comuns, e a adubação constituiu de 83 g da fórmula 30-120-70 por metro linear por ocasião do plantio e 33 g por metro linear da fórmula 50-0-4, em cobertura 22 dias após a germinação. Plantas foram coletadas a partir dos 20 dias após a germinação, em intervalos de 20 dias até os 120 dias. As plantas foram divididas em "colmo + folhas", pendão e espiga e analisadas para N, P, K, Ca, Mg e S. Concluíram os autores que diferenças entre cultivares na acumulação de matéria seca na parte vegetativa não se traduzem, necessariamente, por um aumento de peso da matéria seca na espiga. Os cultivares atingem o máximo da quantidade de nutrientes nas seguintes épocas, em dias: N (89-100); P (101-120); K (58-66); Ca (74-94); Mg (100-120); S (93-95). Verificaram, ainda, que as quantidades máximas extraídas em mg/planta são: N (3169-3878); P (541-642); K (3850-4693); Ca (582-782); Mg (654-943); S (444-799). Finalmente, a exportação de nutrientes nas espigas por hectare (50.000 plantas) colhidas é: N (111-143 kg); P (22-30 kg); Ca (0,7-1,1 kg); Mg (10-12kg); S(9-13kg)

    Acumulação diferencial de nutrientes por cinco cultivares de milho (Zea mays L.): III - diagnose foliar

    Get PDF
    The objective of the present work was to examine the differences in nutrients levels between the cultivars Agroceres 256, Agroceres 504, Centralmex, H-7974 and Piranão. The experiment was carried out in the municipality of Piracicaba, State of São Paulo, Brazil. The soil type was a sandy "Regossol" of medium fertility. Common cultivation practices were followed, and the fertilizer used consisted of 83 g of a formula: 30-120-70, per meter length at planting, and 33 g of the formula 50-0-45 per meter length as a dressing. The plant population density was 50,000 per hectare. Sixty days after planting and at flowering the leaves (+4) and the ear leaf, respectively, were harvested for diagnostic purposes. It was observed that differences exist in the concentrations of P, K, Ca, Mg and Fe in the leaf (+4) dry matter of the cultivars at 60 days after planting, and in the concentrations of P, K, Cu and Fe during flowering. Such differences did not affect the production of grain. The extent of the differences between cultivars in the levels of nutrients in the leaves depends on the period of sampling. The harvestry of leaves at determined physiological periods tend to dimi-nuish these differences. Cultivars with similar yield potential may be regarded equally in relation to their leaf analysis, provided that one adopts an adequate range of nutrient levels.O trabalho foi desenvolvido com a finalidade de se aquilatar diferenças nos níveis críticos entre os cultivares Agroceres 256, Agroceres 504, Centralmex, H-7974 e Piranão. O ensaio foi conduzido no Município de Piracicaba, SP, tendo como suporte um Regossol arenoso de média fertilidade. Foram seguidas as práticas culturais comuns e a adubação constuiu de 83 g da fórmula 30-120-70, por metro linear no plantio e 33 g/ /metro linear da fórmula 50-0-45 em cobertura. A população de plantas foi de 50.000 por hectare. Aos 60 dias após o plantio e no florescimento foram coletadas as folhas (+4) e da inserção da espiga, para fins de diagnose. Foram observadas diferenças nas concentrações de P, K, Ca, Mg e Fe, na matéria seca das folhas (+4) dos cultivares aos 60 dias após o plantio, e nas concentrações de P, K, Cu e Fe na folha da inserção da espiga, na fase de florescimento. Diferenças estas que não afetam a produção de grãos. A extensão das diferenças entre cultivares nos níveis foliares dos nutrientes depende da época de amostragem. As coletas feitas em épocas fisiológicas determinadas tende a diminuir estas diferenças. Cultivares com potenciais de produção semelhantes podem ser tratados igualmente em relação à análise de folhas, desde que se adote uma faixa de teores adequados

    Novel sources of Flavor Changed Neutral Currents in the 331RHN331_{RHN} model

    Full text link
    Sources of Flavor Changed Neutral Currents (FCNC) naturally emerge from a well motivated framework called 3-3-1 with right-handed neutrinos model, 331RHN331_{RHN} for short, mediated by an extra neutral gauge boson ZZ^{\prime}. Following previous works we calculate these sources and in addition we derive new ones coming from CP-even and -odd neutral scalars which appear due to their non-diagonal interactions with the physical standard quarks. Furthermore we show that bounds related to the neutral mesons systems KLKSK_L-K_S and D10D20D_1^0 - D_2^0 may be significantly strengthened in the presence of these new interactions allowing us to infer stronger constraints on the parameter space of the model.Comment: Published version. 10 pages, 6 figure

    Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.

    Get PDF
    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat

    The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations

    Get PDF
    The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding rocket payload built to study the crucial interface between the solar chromosphere and the corona by observing the strongest line in the solar spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in obtaining the first ever sub-arcsecond (0.5") images of this region with high sensitivity and cadence. Detailed analyses of those observations have contributed significantly to new ideas about the nature of the transition region. Here, we present a broad overview of the Ly-a atmosphere as revealed by the VAULT observations, and bring together past results and new analyses from the second VAULT flight to create a synthesis of our current knowledge of the high-resolution Ly-a Sun. We hope that this work will serve as a good reference for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure

    Electron Dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}: Evidence for the Pseudogap State and Unconventional c-axis Response

    Full text link
    Infrared reflectance measurements were made with light polarized along the a- and c-axis of both superconducting and antiferromagnetic phases of electron doped Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}. The results are compared to characteristic features of the electromagnetic response in hole doped cuprates. Within the CuO2_2 planes the frequency dependent scattering rate, 1/τ(ω)\tau(\omega), is depressed below \sim 650 cm1^{-1}; this behavior is a hallmark of the pseudogap state. While in several hole doped compounds the energy scales associated with the pseudogap and superconducting states are quite close, we are able to show that in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} the two scales differ by more than one order of magnitude. Another feature of the in-plane charge response is a peak in the real part of the conductivity, σ1(ω)\sigma_1(\omega), at 50-110 cm1^{-1} which is in sharp contrast with the Drude-like response where σ1(ω)\sigma_1(\omega) is centered at ω=0\omega=0. This latter effect is similar to what is found in disordered hole doped cuprates and is discussed in the context of carrier localization. Examination of the c-axis conductivity gives evidence for an anomalously broad frequency range from which the interlayer superfluid is accumulated. Compelling evidence for the pseudogap state as well as other characteristics of the charge dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} signal global similarities of the cuprate phase diagram with respect to electron and hole doping.Comment: Submitted to PR

    Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity

    Full text link
    We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum.Comment: 22 Pages Late
    corecore