17,533 research outputs found
Fundraising and vote distribution: a non-equilibrium statistical approach
The number of votes correlates strongly with the money spent in a campaign,
but the relation between the two is not straightforward. Among other factors,
the output of a ballot depends on the number of candidates, voters, and
available resources. Here, we develop a conceptual framework based on Shannon
entropy maximization and Superstatistics to establish a relation between the
distributions of money spent by candidates and their votes. By establishing
such a relation, we provide a tool to predict the outcome of a ballot and to
alert for possible misconduct either in the report of fundraising and spending
of campaigns or on vote counting. As an example, we consider real data from a
proportional election with candidates, where a detailed data
verification is virtually impossible, and show that the number of potential
misconducting candidates to audit can be reduced to only nine
Renormalization of the N=1 Abelian Super-Chern-Simons Theory Coupled to Parity-Preserving Matter
We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model
coupled to parity-preserving matter on the light of the regularization
independent algebraic method. The model shows to be stable under radiative
corrections and to be gauge anomaly free.Comment: Latex, 7 pages, no figure
The Signature Triality of Majorana-Weyl Spacetimes
Higher dimensional Majorana-Weyl spacetimes present space-time dualities
which are induced by the Spin(8) triality automorphisms. Different signature
versions of theories such as 10-dimensional SYM's, superstrings, five-branes,
F-theory, are shown to be interconnected via the S_3 permutation group.
Bilinear and trilinear invariants under space-time triality are introduced and
their possible relevance in building models possessing a space-versus-time
exchange symmetry is discussed. Moreover the Cartan's ``vector/chiral
spinor/antichiral spinor" triality of SO(8) and SO(4,4) is analyzed in detail
and explicit formulas are produced in a Majorana-Weyl basis. This paper is the
extended version of hep-th/9907148.Comment: 28 pages, LaTex. Extended version of hep-th/990714
Breathing synchronization in interconnected networks
Global synchronization in a complex network of oscillators emerges from the
interplay between its topology and the dynamics of the pairwise interactions
among its numerous components. When oscillators are spatially separated,
however, a time delay appears in the interaction which might obstruct
synchronization. Here we study the synchronization properties of interconnected
networks of oscillators with a time delay between networks and analyze the
dynamics as a function of the couplings and communication lag. We discover a
new breathing synchronization regime, where two groups appear in each network
synchronized at different frequencies. Each group has a counterpart in the
opposite network, one group is in phase and the other in anti-phase with their
counterpart. For strong couplings, instead, networks are internally
synchronized but a phase shift between them might occur. The implications of
our findings on several socio-technical and biological systems are discussed.Comment: 7 pages, 3 figures + 3 pages of Supplemental Materia
Chiral spin-orbital liquids with nodal lines
Strongly correlated materials with strong spin-orbit coupling hold promise
for realizing topological phases with fractionalized excitations. Here we
propose a chiral spin-orbital liquid as a stable phase of a realistic model for
heavy-element double perovskites. This spin liquid state has Majorana fermion
excitations with a gapless spectrum characterized by nodal lines along the
edges of the Brillouin zone. We show that the nodal lines are topological
defects of a non-Abelian Berry connection and that the system exhibits
dispersing surface states. We discuss some experimental signatures of this
state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia
Tunable asymmetric magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films
We investigate the magnetization dynamics through the magnetoimpedance effect
in ferromagnetic NiFe/Cu/Co films. We observe that the magnetoimpedance
response is dependent on the thickness of the non-magnetic Cu spacer material,
a fact associated to the kind of the magnetic interaction between the
ferromagnetic layers. Thus, we present an experimental study on asymmetric
magnetoimpedance in ferromagnetic films with biphase magnetic behavior and
explore the possibility of tuning the linear region of the magnetoimpedance
curves around zero magnetic field by varying the thickness of the non-magnetic
spacer material, and probe current frequency. We discuss the experimental
magnetoimpedance results in terms of the different mechanisms governing the
magnetization dynamics at distinct frequency ranges, quasi-static magnetic
properties, thickness of the non-magnetic spacer material, and the kind of the
magnetic interaction between the ferromagnetic layers. The results place
ferromagnetic films with biphase magnetic behavior exhibiting asymmetric
magnetoimpedance effect as a very attractive candidate for application as probe
element in the development of auto-biased linear magnetic field sensors.Comment: 5 figure
The influence of statistical properties of Fourier coefficients on random surfaces
Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases
- …