38 research outputs found

    Pharmacokinetics and pharmacodynamics of insulin aspart in patients with Type 2 diabetes: Assessment using a meal tolerance test under clinical conditions

    Get PDF
    Few studies have evaluated the pharmacokinetics of rapid-acting insulin analogues in patients with Type 2 diabetes, especially under clinical conditions. The aim of the present study was to assess both the pharmacokinetics and pharmacodynamics of insulin aspart in Type 2 diabetic patients who were being treated with the analogue alone. Meal tolerance tests with and without self-injection of a customary dose of insulin aspart (0.05-0.22 U/kg) were conducted in 20 patients in a randomized cross-over study. The dose of insulin aspart (per bodyweight) was significantly correlated with both the maximum concentration (r 2 = 0.59; P < 0.01) and area under the concentration-time curve for insulin aspart (r 2 = 0.53; P < 0.01). However, the time to maximum concentration (T max), which varied widely from < 60 to ≥ 120 min, was not associated with either dosage (r 2 = 0.02; P = 0.51) or body mass index (r 2 = 0.02; P = 0.57). Injection of insulin aspart exacerbated delayed hyperinsulinaemia after meal loading, mainly in patients with T max ≥ 120 min. With regard to pharmacodynamics, insulin aspart had favourable effects on postprandial hyperglycaemia, hyperglucagonaemia and hyperlipidaemia. The T max for this insulin analogue differed greatly between individuals and delayed hyperinsulinaemia was particularly exacerbated in patients with higher T max values. Identification of the factors contributing to interindividual variation in the absorption lag time is essential for improving the efficacy and safety of insulin aspart. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd

    Olmesartan ameliorates a dietary rat model of non-alcoholic steatohepatitis through its pleiotropic effects

    Get PDF
    金沢大学大学院医学系研究科金沢大学医薬保健研究域医学系Insulin resistance is a major pathological condition associated with obesity and metabolic syndrome. Insulin resistance and the renin-angiotensin system are intimately linked. We evaluated the role of the renin-angiotensin system in the pathogenesis of insulin resistance-associated, non-alcoholic steatohepatitis by using the angiotensin II type 1 receptor blocker olmesartan medoxomil in a diabetic rat model. The effects of olmesartan on methionine- and choline-deficient (MCD) diet-induced steatohepatitis were investigated in obese, diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and control Long-Evans Tokushima Otsuka (LETO) rats. Components of the renin-angiotensin system were up-regulated in the livers of OLETF rats, compared with LETO rats. In OLETF, but not LETO, rats, oral administration of olmesartan for 8 weeks ameliorated insulin resistance. Moreover, olmesartan suppressed MCD diet-induced hepatic steatosis and the hepatic expression of lipogenic genes (sterol regulatory element-binding protein-1c and fatty acid synthase) in OLETF, but not LETO, rats. In both OLETF and LETO rats, olmesartan inhibited hepatic oxidative stress (4-hydroxy-2-nonenal-modified protein) and expression of NADPH oxidase. Olmesartan also inhibited hepatic fibrosis, stellate cell activation, and expression of fibrogenic genes (transforming growth factor-β, α1 [I] procollagen, plasminogen activator inhibitor-1) in both OLETF and LETO rats. In conclusion, pharmacological blockade of the angiotensin II type 1 receptor slows the development of steatohepatitis in the OLETF rat model. This angiotensin II type 1 receptor blocker may exert insulin resistance-associated effects against hepatic steatosis and inflammation as well as direct effects against the generation of reactive oxygen species and fibrogenesis. © 2008 Elsevier B.V. All rights reserved

    Direct Observation of ATP-Induced Conformational Changes in Single P2X4 Receptors

    Get PDF
    The ATP-gated P2X4 receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X4 receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X4 receptors using fast-scanning atomic force microscopy (AFM). AFM images of the membrane-dissociated and membrane-inserted forms of P2X4 receptors and a functional analysis revealed that P2X4 receptors have an upward orientation on mica but lean to one side. Time-lapse imaging of the ATP-induced structural changes in P2X4 receptors revealed two different forms of activated structures under 0 Ca2+ conditions, namely a trimer structure and a pore dilation-like tripartite structure. A dye uptake measurement demonstrated that ATP-activated P2X4 receptors display pore dilation in the absence of Ca2+. With Ca2+, the P2X4 receptors exhibited only a disengaged trimer and no dye uptake was observed. Thus our data provide a new insight into ATP-induced structural changes in P2X4 receptors that correlate with pore dynamics

    Mortality rate of patients with asymptomatic primary biliary cirrhosis diagnosed at age 55 years or older is similar to that of the general population

    Get PDF
    Recent routine testing for liver function and anti-mitochondrial antibodies has increased the number of newly diagnosed patients with primary biliary cirrhosis (PBC). This study investigated the prognosis of asymptomatic PBC patients, focusing on age difference, to clarify its effect on the prognosis of PBC patients. The study was a systematic cohort analysis of 308 consecutive patients diagnosed with asymptomatic PBC. We compared prognosis between the elderly (55 years or older at the time of diagnosis) and the young patients (< 55 years). The mortality rate of the patients was also compared with that of an age- and gender-matched general population. The elderly patients showed a higher aspartate aminotransferase-to-platelet ratio, and lower alanine aminotransferase level than the young patients (P < 0.01 and P = 0.03, respectively). The two groups showed similar values for alkaline phosphatase and immunoglobulin M. Death in the young patients was more likely to be due to liver failure (71%), while the elderly were likely to die from other causes before the occurrence of liver failure (88%; P < 0.01), especially from malignancies (35%). The mortality rate of the elderly patients was not different from that of the age- and gender-matched general population (standardized mortality ratio, 1.1; 95% confidence interval, 0.6-1.7), although this rate was significantly higher than that of the young patients (P = 0.044). PBC often presents as more advanced disease in elderly patients than in the young. However, the mortality rate of the elderly patients is not different from that of an age- and gender-matched general population

    Selenoprotein P as a diabetes-associated hepatokine that impairs angiogenesis by inducing VEGF resistance in vascular endothelial cells

    Get PDF
    Aims/hypothesis Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. Methods We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. Results Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP-/-mice. SeP+/-mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. Conclusions/interpretation The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes. © 2014 Springer-Verlag Berlin Heidelberg

    A liver-derived secretory protein, selenoprotein P, causes insulin resistance

    Get PDF
    金沢大学医薬保健研究域医学系The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes. © 2010 Elsevier Inc

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore