621 research outputs found
Can brewer-sponsored ‘drink responsibly’ warning message be effective without alcohol policies in Nigeria?
Alcohol availability, use and misuse and their related problems are rising in many parts of the African continent and this has been attributed to many factors such as non-existent or ineffective regulatory measures. In contemporary Nigeria, while a culture of intoxication is growing, there are no regulatory measures in the form of alcohol policies to reduce it. What exists is brewer-sponsored self-regulation. This paper therefore, critically analyses this self-imposed 'drink responsibly' warning message, arguing that because responsible drinking messages are strategically designed to serve the interest of alcohol industries, it cannot be effective. The paper further argues that because there are no definitions of standard drinks and where alcohol by volume (ABV) is scarcely inscribed on product labels of alcoholic beverages, such message will remain ineffective. Therefore, it recommends that an urgent step should be taken by the government to formulate and implement comprehensive evidence-based alcohol policies in Nigeria
A general perspective of the characterization and quantification of nanoparticles: Imaging, spectroscopic, and separation techniques
This article gives an overview of the different techniques used to identify, characterize, and quantify engineered nanoparticles (ENPs). The state-of-the-art of the field is summarized, and the different characterization techniques have been grouped according to the information they can provide. In addition, some selected applications are highlighted for each technique. The classification of the techniques has been carried out according to the main physical and chemical properties of the nanoparticles such as morphology, size, polydispersity characteristics, structural information, and elemental composition. Microscopy techniques including optical, electron and X-ray microscopy, and separation techniques with and without hyphenated detection systems are discussed. For each of these groups, a brief description of the techniques, specific features, and concepts, as well as several examples, are described.Junta de AndalucÃa FQM-5974CEI-Biotic Granada CEI2013- MP-1
Research opportunities with compact accelerator-driven neutron sources
Since the discovery of the neutron in 1934 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator–driven neutron sources (CANS) are becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS
Tunneling ``zero-bias'' anomaly in the quasi-ballistic regime
For the first time, we study the tunneling density of states (DOS) of the
interacting electron gas beyond the diffusive limit. A strong correction to the
DOS persists even at electron energies exceeding the inverse transport
relaxation time, which could not be expected from the well-known
Altshuler-Aronov-Lee (AAL) theory. This correction originates from the
interference between the electron waves scattered by an impurity and by the
Friedel oscillation this impurity creates. Account for such processes also
revises the AAL formula for the DOS in the diffusive limit.Comment: 4 pages, 2 .eps figures, submitted to Phys. Rev. Let
The Dimensional-Reduction Anomaly in Spherically Symmetric Spacetimes
In D-dimensional spacetimes which can be foliated by n-dimensional
homogeneous subspaces, a quantum field can be decomposed in terms of modes on
the subspaces, reducing the system to a collection of (D-n)-dimensional fields.
This allows one to write bare D-dimensional field quantities like the Green
function and the effective action as sums of their (D-n)-dimensional
counterparts in the dimensionally reduced theory. It has been shown, however,
that renormalization breaks this relationship between the original and
dimensionally reduced theories, an effect called the dimensional-reduction
anomaly. We examine the dimensional-reduction anomaly for the important case of
spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references
adde
Recognition of Regional Water Table Patterns for Estimating Recharge Rates in Shallow Aquifers
We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods.
Includes supplemental materials
Computational Physics on Graphics Processing Units
The use of graphics processing units for scientific computations is an
emerging strategy that can significantly speed up various different algorithms.
In this review, we discuss advances made in the field of computational physics,
focusing on classical molecular dynamics, and on quantum simulations for
electronic structure calculations using the density functional theory, wave
function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012,
Helsinki, Finland, June 10-13, 201
Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model
We consider Hermitian and symmetric random band matrices in
dimensions. The matrix elements , indexed by , are independent, uniformly distributed random variables if \abs{x-y}
is less than the band width , and zero otherwise. We prove that the time
evolution of a quantum particle subject to the Hamiltonian is diffusive on
time scales . We also show that the localization length of an
arbitrarily large majority of the eigenvectors is larger than a factor
times the band width. All results are uniform in the size
\abs{\Lambda} of the matrix.Comment: Minor corrections, Sections 4 and 11 update
Influence of typical environments on quantum processes
We present the results of studying the influence of different environmental
states on the coherence of quantum processes. We choose to discuss a simple
model which describe two electronic reservoirs connected through tunneling via
a resonant state. The model could, e.g., serve as an idealization of inelastic
resonant tunneling through a double barrier structure. We develop Schwinger's
closed time path formulation of non-equilibrium quantum statistical mechanics,
and show that the influence of the environment on a coherent quantum process
can be described by the value of a generating functional at a specific force
value, thereby allowing for a unified discussion of destruction of phase
coherence by various environmental states: thermal state, classical noise, time
dependent classical field, and a coherent state. The model allows an extensive
discussion of the influence of dissipation on the coherent quantum process, and
expressions for the transmission coefficient are obtained in the possible
limits.Comment: 46 pages, 11 post script figures. Accepted for publication in
Physical Review
- …