577 research outputs found

    Can brewer-sponsored ‘drink responsibly’ warning message be effective without alcohol policies in Nigeria?

    Get PDF
    Alcohol availability, use and misuse and their related problems are rising in many parts of the African continent and this has been attributed to many factors such as non-existent or ineffective regulatory measures. In contemporary Nigeria, while a culture of intoxication is growing, there are no regulatory measures in the form of alcohol policies to reduce it. What exists is brewer-sponsored self-regulation. This paper therefore, critically analyses this self-imposed 'drink responsibly' warning message, arguing that because responsible drinking messages are strategically designed to serve the interest of alcohol industries, it cannot be effective. The paper further argues that because there are no definitions of standard drinks and where alcohol by volume (ABV) is scarcely inscribed on product labels of alcoholic beverages, such message will remain ineffective. Therefore, it recommends that an urgent step should be taken by the government to formulate and implement comprehensive evidence-based alcohol policies in Nigeria

    Perspectivas teóricas del aprendizaje en contextos informales

    Get PDF
    Reseñ

    Research opportunities with compact accelerator-driven neutron sources

    Get PDF
    Since the discovery of the neutron in 1934 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator–driven neutron sources (CANS) are becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS

    Tunneling ``zero-bias'' anomaly in the quasi-ballistic regime

    Full text link
    For the first time, we study the tunneling density of states (DOS) of the interacting electron gas beyond the diffusive limit. A strong correction to the DOS persists even at electron energies exceeding the inverse transport relaxation time, which could not be expected from the well-known Altshuler-Aronov-Lee (AAL) theory. This correction originates from the interference between the electron waves scattered by an impurity and by the Friedel oscillation this impurity creates. Account for such processes also revises the AAL formula for the DOS in the diffusive limit.Comment: 4 pages, 2 .eps figures, submitted to Phys. Rev. Let

    The Dimensional-Reduction Anomaly in Spherically Symmetric Spacetimes

    Get PDF
    In D-dimensional spacetimes which can be foliated by n-dimensional homogeneous subspaces, a quantum field can be decomposed in terms of modes on the subspaces, reducing the system to a collection of (D-n)-dimensional fields. This allows one to write bare D-dimensional field quantities like the Green function and the effective action as sums of their (D-n)-dimensional counterparts in the dimensionally reduced theory. It has been shown, however, that renormalization breaks this relationship between the original and dimensionally reduced theories, an effect called the dimensional-reduction anomaly. We examine the dimensional-reduction anomaly for the important case of spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references adde

    Recognition of Regional Water Table Patterns for Estimating Recharge Rates in Shallow Aquifers

    Get PDF
    We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods. Includes supplemental materials

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

    Full text link
    We consider Hermitian and symmetric random band matrices HH in d≥1d \geq 1 dimensions. The matrix elements HxyH_{xy}, indexed by x,y∈Λ⊂Zdx,y \in \Lambda \subset \Z^d, are independent, uniformly distributed random variables if \abs{x-y} is less than the band width WW, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian HH is diffusive on time scales t≪Wd/3t\ll W^{d/3}. We also show that the localization length of an arbitrarily large majority of the eigenvectors is larger than a factor Wd/6W^{d/6} times the band width. All results are uniform in the size \abs{\Lambda} of the matrix.Comment: Minor corrections, Sections 4 and 11 update

    Influence of typical environments on quantum processes

    Full text link
    We present the results of studying the influence of different environmental states on the coherence of quantum processes. We choose to discuss a simple model which describe two electronic reservoirs connected through tunneling via a resonant state. The model could, e.g., serve as an idealization of inelastic resonant tunneling through a double barrier structure. We develop Schwinger's closed time path formulation of non-equilibrium quantum statistical mechanics, and show that the influence of the environment on a coherent quantum process can be described by the value of a generating functional at a specific force value, thereby allowing for a unified discussion of destruction of phase coherence by various environmental states: thermal state, classical noise, time dependent classical field, and a coherent state. The model allows an extensive discussion of the influence of dissipation on the coherent quantum process, and expressions for the transmission coefficient are obtained in the possible limits.Comment: 46 pages, 11 post script figures. Accepted for publication in Physical Review

    Barrier effects on the collective excitations of split Bose-Einstein condensates

    Full text link
    We investigate the collective excitations of a single-species Bose gas at T=0 in a harmonic trap where the confinement undergoes some splitting along one spatial direction. We mostly consider onedimensional potentials consisting of two harmonic wells separated a distance 2 z_0, since they essentially contain all the barrier effects that one may visualize in the 3D situation. We find, within a hydrodynamic approximation, that regardless the dimensionality of the system, pairs of levels in the excitation spectrum, corresponding to neighbouring even and odd excitations, merge together as one increases the barrier height up to the current value of the chemical potential. The excitation spectra computed in the hydrodynamical or Thomas-Fermi limit are compared with the results of exactly solving the time-dependent Gross-Pitaevskii equation. We analyze as well the characteristics of the spatial pattern of excitations of threedimensional boson systems according to the amount of splitting of the condensate.Comment: RevTeX, 12 pages, 13 ps figure
    • …
    corecore