In D-dimensional spacetimes which can be foliated by n-dimensional
homogeneous subspaces, a quantum field can be decomposed in terms of modes on
the subspaces, reducing the system to a collection of (D-n)-dimensional fields.
This allows one to write bare D-dimensional field quantities like the Green
function and the effective action as sums of their (D-n)-dimensional
counterparts in the dimensionally reduced theory. It has been shown, however,
that renormalization breaks this relationship between the original and
dimensionally reduced theories, an effect called the dimensional-reduction
anomaly. We examine the dimensional-reduction anomaly for the important case of
spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references
adde