1,420 research outputs found

    Characterization of a reproducible model of fracture healing in mice using an open femoral osteotomy

    Get PDF
    Purpose: The classic fracture model, described by Bonnarens and Einhorn in 1984, enlists a blunt guillotine to generate a closed fracture in a pre-stabilized rodent femur. However, in less experienced hands, this technique yields considerable variability in fracture pattern and requires highly-specialized equipment. This study describes a reproducible and low-cost model of mouse fracture healing using an open femoral osteotomy. Methods: Femur fractures were produced in skeletally mature male and female mice using an open femoral osteotomy after intramedullary stabilization. Mice were recovered for up to 28 days prior to analysis with microradiographs, histomorphometry, a novel μCT methodology, and biomechanical torsion testing at weekly intervals. Results: Eight mice were excluded due to complications (8/193, 4.1%), including unacceptable fracture pattern (2/193, 1.0%). Microradiographs showed progression of the fracture site to mineralized callus by 14 days and remodelling 28 days after surgery. Histomorphometry from 14 to 28 days revealed decreased cartilage area and maintained bone area. μCT analysis demonstrated a reduction in mineral surface from 14 to 28 days, stable mineral volume, decreased strut number, and increased strut thickness. Torsion testing at 21 days showed that fractured femurs had 61% of the ultimate torque, 63% of the stiffness, and similar twist to failure when compared to unfractured contralateral femurs. Conclusions: The fracture model described herein, an open femoral osteotomy, demonstrated healing comparable to that reported using closed techniques. This simple model could be used in future research with improved reliability and reduced costs compared to the current options

    Dark Energy and Extending the Geodesic Equations of Motion: Its Construction and Experimental Constraints

    Get PDF
    With the discovery of Dark Energy, ΛDE\Lambda_{DE}, there is now a universal length scale, DE=c/(ΛDEG)1/2\ell_{DE}=c/(\Lambda_{DE} G)^{1/2}, associated with the universe that allows for an extension of the geodesic equations of motion. In this paper, we will study a specific class of such extensions, and show that contrary to expectations, they are not automatically ruled out by either theoretical considerations or experimental constraints. In particular, we show that while these extensions affect the motion of massive particles, the motion of massless particles are not changed; such phenomena as gravitational lensing remain unchanged. We also show that these extensions do not violate the equivalence principal, and that because DE=14010820800\ell_{DE}=14010^{800}_{820} Mpc, a specific choice of this extension can be made so that effects of this extension are not be measurable either from terrestrial experiments, or through observations of the motion of solar system bodies. A lower bound for the only parameter used in this extension is set.Comment: 19 pages. This is the published version of the first half of arXiv:0711.3124v2 with corrections include

    Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis

    The Isospin Makeup of the Giant Resonances from (p,n) Reaction Studies at Intermediate Energies

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    Electroweak Baryogenesis in the Next to Minimal Supersymmetric Model

    Get PDF
    In the electroweak phase transition there arises the problem of baryon number washout by sphaleron transitions, which can be avoided if the phase transition is strongly enough first order. The minimal supersymmetric standard model has just two Higgs doublets H1 and H2, while the next to minimal model, NMSSM, has an additional singlet, N, this latter giving rise to the helpful feature that the Higgs potential contains a tree level trilinear field term. We use the tunneling criterion for the existence of a first order electroweak phase change. A quantitative statistical analysis indicates that with parameters of the NMSSM satisfying the experimental constraints a strong first order phase change occurs in about 50% of cases.Comment: 15 pages, plain LaTe

    Strong Spin-Flip Transitions in (p,n) Reactions

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    An exact solution to determination of an open orbit

    Get PDF
    We present an exact solution of the equations for orbit determination of a two body system in a hyperbolic or parabolic motion. In solving this problem, we extend the method employed by Asada, Akasaka and Kasai (AAK) for a binary system in an elliptic orbit. The solutions applicable to each of elliptic, hyperbolic and parabolic orbits are obtained by the new approach, and they are all expressed in an explicit form, remarkably, only in terms of elementary functions. We show also that the solutions for an open orbit are recovered by making a suitable transformation of the AAK solution for an elliptic case.Comment: 28 pages, text improved, references added; version accepted by Celestial Mec
    corecore