163 research outputs found

    Overvåking av forurensningsituasjonen i indre Oslofjord 2003

    Get PDF
    Årsliste 2004Rapporten omhandler resultatene fra undersøkelser foretatt i indre Oslofjord hovedsakelig i 2003. Dypvannsfornyelsen var god i Vestfjorden, men beskjeden i Bunnefjorden. Oksygenforholdene har blitt bedre i Vestfjorden siden begynnelsen av 1980-tallet, mens det ikke har skjedd noen forandring i Bunnefjorden. Det ble observert reker i Lysakerfjorden høsten 2003 (men ikke i 2002), noe som skyldtes bedre oksygenforhold. Rensetiltakene har forandret fjordens vannkjemi, med klart avtakende konsentrasjoner av fosfor mellom overflatelaget og 50 meters dyp, samt i Vestfjordens dypere vannmasser. I Bunnefjordens dypvann har det ikke skjedd noen forandring. Nitrogenrensingen har foreløpig ikke gitt signifikant utslag i observasjonene. Resultatene av strandnottrekk viser en økt fangst av kutling i Vestfjorden og Bunnefjorden, men antall arter viser ingen økning. Undersøkelser av miljøgifters effekt på fisk innsamlet i 2002 viste påvirkning av fra PAH/PCB/dioksin samt bly i torsk og skrubbe, sammenlignet med fisk fra ytre Oslofjord. Det var dog ikke noen effekt av østrogenliknende stoffer.Fagrådet for vann- og avløpsteknisk samarbeid i indre Oslofjor

    Encoding and retrieval in a CA1 microcircuit model of the hippocampus

    Get PDF
    Recent years have witnessed a dramatic accumulation of knowledge about the morphological, physiological and molecular characteristics, as well as connectivity and synaptic properties of neurons in the mammalian hippocampus. Despite these advances, very little insight has been gained into the computational function of the different neuronal classes; in particular, the role of the various inhibitory interneurons in encoding and retrieval of information remains elusive. Mathematical and computational models of microcircuits play an instrumental role in exploring microcircuit functions and facilitate the dissection of operations performed by diverse inhibitory interneurons. A model of the CA1 microcircuitry is presented using biophysical representations of its major cell types: pyramidal, basket, axo-axonic, bistratified and oriens lacunosummoleculare cells. Computer simulations explore the biophysical mechanisms by which encoding and retrieval of spatio-temporal input patterns are achieved by the CA1 microcircuitry. The model proposes functional roles for the different classes of inhibitory interneurons in the encoding and retrieval cycles

    Measurement of negative particle multiplicity in S - Pb collisions at 200 GeV/c per nucleon with the NA36 TPC

    Get PDF
    A high statistics study of the negative multiplicity distribution from S-Pb collisions at 200 GeV/c per nucleon is presented. The NA36 TPC was used to detect charged particles; corrections are based upon the maximum entropy method.A high statistics study of the negative multiplicity distribution from S-Pb collisions at 200 GeV/c per nucleon is presented. The NA36 TPC was used to detect charged particles; corrections are based upon the maximum entropy method.A high statistics study of the negative particle multiplicity distribution from S–Pb collisions at 200 GeV/ c per nucleon is presented. The NA36 TPC was used to detect charged particles; corrections are based upon the maximum entropy method

    Configuration-interaction calculations of positron binding to zinc and cadmium

    Get PDF
    The configuration-interaction method is applied to the study of positronic zinc (e+Zn) and positronic cadmium (e+Cd). The estimated binding energies and annihilation rates were 0.00373 hartree and 0.42×109 sec-1 for e+Zn and 0.006 10 hartree and 0.56×109 sec-1 for e+Cd. The low-energy elastic cross section and Zeff were estimated from a model potential that was tuned to the binding energies and annihilation rates. Since the scattering lengths were positive (14.5a0 for Zn and 11.6a0 for Cd) the differential cross sections are larger at backward angles than at forward angles just above threshold. The possibilities of measuring differential cross sections to confirm positron binding to these atoms is discussed

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19

    High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores

    Get PDF
    Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s. Here, we present continuous records of calcium (Ca2+), sodium (Na+), ammonium (NH+4), nitrate (NO-3) and electrolytic conductivity at 1 mm depth resolution from the NGRIP (North Greenland Ice Core Project) and NEEM (North Greenland Eemian Ice Drilling) ice cores produced by the Bern Continuous Flow Analysis group in the years 2000 to 2011 (Erhardt et al., 2021). Both of the records were previously used in a number of studies but were never published in full 1 mm resolution. Alongside the 1 mm datasets we provide decadal averages, a detailed description of the methods, relevant references, an assessment of the quality of the data and its usable resolution. Along the way we will also give some historical context on the development of the Bern CFA system. The data is available in full 1 mm and 10-year-averaged resolution on PANGAEA (https://doi.org/10.1594/PANGAEA.935838, Erhardt et al., 2021
    corecore