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Abstract. A high statistics study of the negative particle multiplicity distribution from S-Pb collisions

at 200 GeV/c per nucleon is presented. The NA36 TPC was used to detect charged particles; corrections

are based upon the maximum entropy method.

Introduction.

Experiments with ultrarelativistic nucleus-nucleus collisions may lead to the discovery of a new state

of matter: the quark gluon plasma. Various experiments involved in this program are both investigating

different predicted plasma signatures and trying to understand the dynamics of these collisions in general.

With this in mind various features are studied; among them multiplicity distributions.

Here a measurement of the inclusive multiplicity distribution of negative particles produced in S-Pb

collisions at 200 GeV/c per nucleon [1] is presented; it was obtained by the NA36 Time Projection Cham-

ber (TPC) designed for the high multiplicity environment of heavy-ion collisions. Detection inefficiencies

were corrected for using a maximum entropy method.

The experimental apparatus.

The NA36 spectrometer consisted of a TPC [2] and a set of detectors originating from the former

European Hybrid Spectrometer [3]. Only the detectors relevant to the multiplicity measurement are

described here. The Pb target (5% of an interaction length) is surrounded by two triggering Si counters

located 20 cm upstream and downstream. The one upstream selects the incident beam S ions, whereas

the one downstream rejects those S ions having not interacted in the target. This rejection, based on

the amplitude of the signal, defines the ”minimum bias” event sample. The target and the Si detectors

are placed inside a vacuum tank extending up to the TPC in order to minimize secondary interactions.

The TPC has a volume of 50×50×100 cm3; its electric field is parallel to a strong horizontal

magnetic field (2.7 T ) produced by a superconducting magnet. The TPC is installed 1 cm above the

beam line and 1 m downstream of the target in order to avoid most nuclear fragments in its sensitive

volume. Because of the strong magnetic field and the position of the TPC, most of the detected particles

have the same charge sign. The TPC is read out by a matrix of 1 cm long anode wires, organized in

40 vertical rows of 192 wires each. The wire and row pitches are 0.1 inch and 1 inch, respectively.

Two-track resolutions of σt
Y = 5 mm and σt

Z = 10 mm, in the vertical direction of the bend plane and

the drift direction, respectively, were obtained [2]. Data were taken with two magnetic field polarities.

The acceptances of the TPC in terms of laboratory rapidity y and transverse momentum PT are

shown in the figure 1. They were derived from Monte-Carlo simulations to be discussed below. In the
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following only the vertex tracks with 2 ≤ y ≤ 5, 0.1 ≤ PT ≤ 2 GeV/c and −89◦ ≤ ϕ ≤ 89◦ (ϕ is the

azimuthal angle) will be considered. These restrictions were made in order to avoid large corrections.

Selection of events.

The results presented here are based on about 14000 minimum bias events. The hits recorded by

the TPC were used to reconstruct and fit tracks by the usual track road and track following methods

[4]. The position of the primary vertex was determined by the Kalman filter method [5]. Its distribution

along the beam axis (Fig. 2) agrees with Monte-Carlo simulations. Contamination from interactions

outside the target has been removed from our data sample by rejecting vertices with X < −115 cm and

X > −109 cm.

Contamination from electromagnetic dissociation (EMD) was removed from the sample of events

without any vertex tracks observed in the TPC. Its contribution was calculated from the charge changing

and the production cross-sections measured by NA36 [6] and estimated elsewhere [7]; about 36.5± 6.1%

of the minimum bias events are due to EMD. All results reported in the following refer therefore, to the

strong inelastic cross section.

Correction of the multiplicity distribution.

The observed negative multiplicity distribution has to be corrected for efficiency and geometrical

acceptance of the TPC, as well as for inelastic reinteractions in the target and downstream of it. For

an observed multiplicity distribution O of M bins and the true one, T , of N bins one arrives at the

following relation [8,9]:

Om =

N
∑

n=1

PmnTn, (1)

where Om (m = 1, ..., M) is the fraction of events with observed negative multiplicity in the bin m and

Tn is the fraction of events with true negative multiplicity in the bin n; Pmn is the probability that an

event with a true multiplicity in the bin n be observed as an event with observed multiplicity in the bin

m. Hence, the Pmn satisfy the following relation:

M
∑

m=1

Pmn = 1. (2)

The matrix P was determined from a Monte-Carlo simulation of S-Pb interactions, based on 23000

IRIS events [10], and which included a GEANT simulation of reinteractions in all parts of the experimen-

tal setup (target, TPC, ...), as well as a simulation of signal formation in the TPC and of reconstruction

and analysis programs. The momenta of simulated tracks at the primary vertex were used to establish

the acceptances discussed above.
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The underconstrained system of equations (1) cannot be solved in a straightforward way; this may

lead to some negative values of Tn. Since the bins’ contents are subject to statistical fluctuations, one

should, rather, look for a solution (T1, ..., TN ) that describes the data well in a statistical sense, which

means that the differences
∣

∣

∣
Om −

∑N
n=1

PmnTn

∣

∣

∣
are of the order of the corresponding statistical errors

σm and not equal to zero as would be the case if (1) is solved directly.

The usual procedure (least squares fit) consists in minimizing

χ2 =

M
∑

m=1

(

Om −
∑N

n=1
PmnTn

σm

)2

. (3)

This method yields unstable solutions [8,9,14].

An alternative method to choose one probability distribution from a set of distributions compatible

with the data requires maximizing the Shannon entropy [11]

S = −
N
∑

n=1

tn ln tn, tn =
Tn

∑N
i=1

Ti

(4)

under constraints imposed by the data. This is known as the principle of maximum entropy, proposed

by E.T. Jaynes [12]. It has been shown that the maximum entropy method (MEM) is the only consis-

tent method of inference for underconstrained problems [13]. The MEM has been used earlier for the

correction of measured multiplicity distributions [8,9,14,15].

Here, the observed multiplicity was corrected as in ref. [14]. The constraints were chosen by

requiring that the moments of the observed distribution be reproduced by the true one, i.e.

M
∑

m=1

mqOm =
M
∑

m=1

N
∑

n=1

mqPmnTn (5)

for some values of q. The choice of moments was motivated by the fact that they are less sensitive

to statistical fluctuations than individual bins. The number of constraints (i.e. number of different

moments) was selected such that

χ2 ≈ M, (6)

where the χ2 is given by (3). A set of seven constraints corresponding to q = −1, 0, 1, ..., 5 was necessary.

Discussion of the results.

Figure 3 shows the multiplicity distribution as it is obtained after the removal of the EMD con-

tamination. This distribution will be corrected in the following in the TPC phase space: 2 ≤ y ≤ 5,

0.1 ≤ PT ≤ 2 GeV/c, −89◦ ≤ ϕ ≤ 89◦, and in the full phase space. For each case the appropriate

matrix Pmn was determined.
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Figure 4 shows the corrected multiplicity distribution in the TPC phase space. The error bars are

statistical. The mean negative multiplicity and the dispersion D− =
√

<n2
−
> − <n−>2 are found to be

<n−>= 33.84± 0.23 (7)

D− = 26.36± 0.68 (8)

and their ratio is
<n−>

D−

= 1.284 ± 0.034 (9)

Figure 5 shows the multiplicity distribution for full phase space; again the error bars are statistical.

The mean multiplicity, dispersion and the ratio are now

<n−> = 57.01 ± 0.39 (10)

D− = 44.04± 0.82 (11)

<n−>

D−

= 1.295 ± 0.020 (12)

As this distribution is inferred from the one measured in the TPC, it may depend on the model

used for simulation [10]. A Monte-Carlo study of the rapidity distribution suggests that the systematic

error of <n−> due to extrapolation to full phase space is of the order of 3.5%.

The corrected distributions have a maximum at low multiplicities corresponding to peripheral col-

lisions, followed by a somewhat flat region (’plateau’) for intermediate values of the impact parameter.

At higher multiplicities a steep fall off (’tail’), due to central collisions is observed.

The corrected distributions are of about the same shape as those measured by other experiments,

especially NA35 [16,17] and NA34 [18]. In particular, our distribution for S-Pb collisions is compatible

with NA35 O-Au [16] distribution when given in terms of KNO variables. One observes, however, a

discrepancy between the distributions in fig. 4 and fig. 5 and those reported by WA80 [19]. This can be

explained by the fact that peripheral collisions were strongly suppressed in the data of ref. [19], whereas

they are included in the present analysis.

A proportionality between D− and <n−> (figure 6) from collisions of oxygen with different targets

at energies of 60 and 200 GeV/n were reported in ref. [16]. Added in figure 6 are the results from S-S and

S-Cu collisions [17] as well as the present S-Pb measurement. All points tend to lie on a straight line. A

similar proportionality had been observed long ago for pp collisions [20]. This proportionality was, in the

case of nucleus-nucleus collisions, explained in terms of a superposition of independent nucleon-nucleus

collisions [16].

Entropy is an alternative, useful variable for the study of multiparticle production [21,22]; it reflects

general features of independent particle production. The total entropy from statistically independent
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phase space regions, e.g. intervalls ∆y, is given by the sum of the entropies of these regions. Therefore,

the total entropy S is proportional to the total rapidity range Ym: S ∼ Ym. This is related to Feynman’s

argument on scaling in the variable ξ = y/Ym [21]. In addition, it follows from eq. (4) that S is invariant

under distorsions of the multiplicity scale. An analysis of hadron-hadron collisions for
√

s > 20 GeV

shows that the entropy (4) increases linearly with the maximum rapidity Ym of the produced pions [21]

S

Ym
= 0.417 ± 0.009 (13)

For S-Pb collisions in this experiment one finds

S

Ym
= 0.487 ± 0.003 (14)

where Ym = ln

(√
s − npmn

mπ

)

, mπ (mn) is the pion (nucleon) mass and
√

s * is the center of mass

energy of np (= A+B) participating nucleons. The maximum rapidity is obtained for central collisions,

therefore Y S−Pb
m = 8.76 was used. (Note that Y p−p

m = 4.93 at 200 GeV/c).

Šimák et al. [23] show also that multiparticle production exhibits a multifractal behaviour by

investigating higher generalized fractal dimensions of order q given by

Dq =
Iq

Ym
(15)

where

Iq =
1

1 − q
ln
(

∑

n

tqn

)

(16)

is the Rényi generalized entropy [24]. It can be shown that

lim
q→1

Iq = S (17)

where S is given by (4). Figure 7 shows measured values of Dq for different values of q. Dq decreases

with q, which may be considered as a signal of a multifractal behaviour in multiplicity distributions.

This behaviour has also been found in ref. [25] for ion-emulsion interactions at various energies. The

absolute values of Dq measured are smaller than those of ref. [25], which may be due to the values of

Ym for the AgBr target.

* s = (PA + PB)2,

where PA = (
√

A2P 2

L + (Amn + ǫA)2,
−→
PT =

−→
0 , A

−→
PL) and PB = (Bmn + ǫB,

−→
P =

−→
0 );

B = B − A[(B/A)2/3 − 1]3/2 is the number of participants in the target for central collisions. A and

B are, respectively, the numbers of nucleons of projectile (sulphur) and target (lead), PL = 200 GeV/c

and mn is the rest mass of a nucleon; the binding energies ǫA and ǫB were neglected.
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Generalized fractal dimensions Dq were also determined from the newly introduced Tsallis gener-

alized entropy [26]:

Iq = k
1 −

∑

n tqn
q − 1

(18)

with k = 1 [26]; they are given in fig. 7 as well. (Note that Iq in (18) fulfills eq. (17)).

Conclusion.

A high statistics study of fully inclusive negative multiplicity distributions from S-Pb collisions at

200 GeV/c is presented both for limited and full phase space. A proportionality between <n−> and

D− is observed. The generalized fractal dimensions are shown to decrease with increasing order which

may be interpreted as a multifractal behaviour of the multiplicity distribution.
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Note added in proof.

The multiplicity distribution presented here is well fitted by the percolating string fusion model

and by the generalized negative binomial model (S. Hegyi, private communication).
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[21] V. Šimák, M. Šumbera and I. Zborovský, Phys. Lett. B206 (1988) 159; in: O. Botner (Ed.), Pro-

ceedings of The International Europhysics Conference on High Energy Physics, European Physical

Society, Petit-Lancy, Switzerland, 1987.
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Fig. 1a. The acceptance of the TPC as a function of the laboratory rapidity y
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