1,610 research outputs found

    Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    Full text link
    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred

    A comparative study of Gaussian Graphical Model approaches for genomic data

    Get PDF
    The inference of networks of dependencies by Gaussian Graphical models on high-throughput data is an open issue in modern molecular biology. In this paper we provide a comparative study of three methods to obtain small sample and high dimension estimates of partial correlation coefficients: the Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and covariance-regularized method (2C)(\ell_{2C}). We first compare them on simulated datasets and we find that PINV is less stable in terms of AUC performance when the number of variables changes. The two regularized methods have comparable performances but 2C\ell_{2C} is much faster than RCM. Finally, we present the results of an application of 2C\ell_{2C} for the inference of a gene network for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of 1st International Workshop on Pattern Recognition, Proteomics, Structural Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    A locally quadratic Glimm functional and sharp convergence rate of the Glimm scheme for nonlinear hyperbolic systems

    Full text link
    Consider the Cauchy problem for a strictly hyperbolic, N×NN\times N quasilinear system in one space dimension u_t+A(u) u_x=0,\qquad u(0,x)=\bar u(x), \eqno (1) where uA(u)u \mapsto A(u) is a smooth matrix-valued map, and the initial data u\overline u is assumed to have small total variation. We investigate the rate of convergence of approximate solutions of (1) constructed by the Glimm scheme, under the assumption that, letting λk(u)\lambda_k(u), rk(u)r_k(u) denote the kk-th eigenvalue and a corresponding eigenvector of A(u)A(u), respectively, for each kk-th characteristic family the linearly degenerate manifold Mk{uΩ:λk(u)rk(u)=0} \mathcal{M}_k \doteq \big\{u\in\Omega : \nabla\lambda_k(u)\cdot r_k(u)=0\big\} is either the whole space, or it is empty, or it consists of a finite number of smooth, N1N-1-dimensional, connected, manifolds that are transversal to the characteristic vector field rkr_k. We introduce a Glimm type functional which is the sum of the cubic interaction potential defined in \cite{sie}, and of a quadratic term that takes into account interactions of waves of the same family with strength smaller than some fixed threshold parameter. Relying on an adapted wave tracing method, and on the decrease amount of such a functional, we obtain the same type of error estimates valid for Glimm approximate solutions of hyperbolic systems satisfying the classical Lax assumptions of genuine nonlinearity or linear degeneracy of the characteristic families.Comment: To appear on Archive for Rational Mechanics and Analysi

    Nonlinear hyperbolic systems: Non-degenerate flux, inner speed variation, and graph solutions

    Full text link
    We study the Cauchy problem for general, nonlinear, strictly hyperbolic systems of partial differential equations in one space variable. First, we re-visit the construction of the solution to the Riemann problem and introduce the notion of a nondegenerate (ND) system. This is the optimal condition guaranteeing, as we show it, that the Riemann problem can be solved with finitely many waves, only; we establish that the ND condition is generic in the sense of Baire (for the Whitney topology), so that any system can be approached by a ND system. Second, we introduce the concept of inner speed variation and we derive new interaction estimates on wave speeds. Third, we design a wave front tracking scheme and establish its strong convergence to the entropy solution of the Cauchy problem; this provides a new existence proof as well as an approximation algorithm. As an application, we investigate the time-regularity of the graph solutions (X,U)(X,U) introduced by the second author, and propose a geometric version of our scheme; in turn, the spatial component XX of a graph solution can be chosen to be continuous in both time and space, while its component UU is continuous in space and has bounded variation in time.Comment: 74 page

    Micropropagation supports reintroduction of an apulian artichoke landrace in sustainable cropping systems

    Get PDF
    Artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) is a perennial plant of the Aster-aceae’s family native to the Mediterranean basin. Italy has rich artichoke biodiversity, but many landraces are subjected to genetic erosion caused by increasing use of commercial varieties that are more homogenous in production. An Apulian landrace ‘Troianella’ was established in vitro to valorize and provide high-quality material for propagation in nurseries and, subsequently, for cultivation in production fields. The shoot proliferation was tested on four different growth media, adding cytokinin (-6-benzylamminopurine (BAP-0.05 mg L−1 ). Among these, the best results were achieved on MS519-A and BM media in which MS macronutrients were supplemented with additional doses of CaCl2 and MgSO4 (plus 120 mg L−1 and 190 mg L−1, respectively). In vitro root induction was obtained with 10 mg L−1 of Indole-3-acetic acid (IAA) and 30 g L−1 of sucrose. Plants derived from tissue culture were acclimatized in greenhouse using mycorrhizal symbiosis to increase survival during the acclimatization phase and to improve their performance after transplanting in field. Three arbuscular mycorrhizal (AM) fungi (Septoglomus viscosum, Funelliformis mosseae, and Symbivit, a commercial mix) were added to a sterile substrate and compared to a sterile control without any AM fungal inocula. After 3 months, the best growth and plant appearance were on substrates with S. viscosum fungus or the commercial mycorrhizal fungi mix. The results supported a development of an efficient micropropagation protocol and a production of high quality plant material for sustainable farming of the endangered ’Troianella’ landrace

    Role of surgical setting and patients-related factors in predicting the occurrence of postoperative pulmonary complications after abdominal surgery

    Get PDF
    OBJECTIVE: The aim of this retrospective study was to evaluate the role of surgical setting (urgent vs. elective) and approach (open vs. laparoscopic) in affecting postoperative pulmonary complications (PPCs) prevalence in patients undergoing abdominal surgery. PATIENTS AND METHODS: After local Ethical Committee approval, 409 patients who had undergone abdominal surgery between January and December 2014 were included in the final analysis. PPCs were defined as the development of one of the following new findings: respiratory failure, pulmonary infection, aspiration pneumonia, pleural effusion, pneumothorax, atelectasis on chest X-ray, bronchospasm or un-planned urgent re-intubation. RESULTS: PPCs prevalence was greater in urgent (33%) vs. elective setting (7%) (chi(2) with Yates correction: 44; p=0.0001) and in open (6%) vs. laparoscopic approach (1.9%) (chi(2) with Yates correction: 12; p=0.0006). PPCs occurrence was positively correlated with in-hospital mortality (Biserial Correlation r=0.37; p=0.0001). Logistic regression showed that urgent setting (p=0.000), Ariscat (Assess Respiratory Risk in Surgical Patients in Catalonia) score (p=0.004), and age (p=0.01) were predictors of PPCs. A cutoff of 23 for Ariscat score was also identified as determining factor for PPCs occurrence with 94% sensitivity and 29% specificity. CONCLUSIONS: Patients undergoing abdominal surgery in an urgent setting were exposed to a higher risk of PPCs compared to patients scheduled for elective procedures. Ariscat score fitted with PPCs prevalence and older patients were exposed to a higher risk of PPCs. Prospective studies are needed to confirm these result

    Quadratic interaction functional for general systems of conservation laws

    Get PDF
    For the Glimm scheme approximation u_\e to the solution of the system of conservation laws in one space dimension \begin{equation*} u_t + f(u)_x = 0, \qquad u(0,x) = u_0(x) \in \R^n, \end{equation*} with initial data u0u_0 with small total variation, we prove a quadratic (w.r.t. \TV(u_0)) interaction estimate, which has been used in the literature for stability and convergence results. No assumptions on the structure of the flux ff are made (apart smoothness), and this estimate is the natural extension of the Glimm type interaction estimate for genuinely nonlinear systems. More precisely we obtain the following results: \begin{itemize} \item a new analysis of the interaction estimates of simple waves; \item a Lagrangian representation of the derivative of the solution, i.e. a map x(t,w)\mathtt x(t,w) which follows the trajectory of each wave ww from its creation to its cancellation; \item the introduction of the characteristic interval and partition for couples of waves, representing the common history of the two waves; \item a new functional Q\mathfrak Q controlling the variation in speed of the waves w.r.t. time. \end{itemize} This last functional is the natural extension of the Glimm functional for genuinely nonlinear systems. The main result is that the distribution Dttx(t,w)D_{tt} \mathtt x(t,w) is a measure with total mass \leq \const \TV(u_0)^2

    High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

    Get PDF
    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms. © 2008 Optical Society of America
    corecore