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QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF

CONSERVATION LAWS

STEFANO BIANCHINI AND STEFANO MODENA

Abstract. For the Glimm scheme approximation uε to the solution of the system of conservation laws
in one space dimension

ut + f(u)x = 0, u(0, x) = u0(x) ∈ Rn,

with initial data u0 with small total variation, we prove a quadratic (w.r.t. Tot.Var.(u0)) interaction

estimate, which has been used in the literature for stability and convergence results. No assumptions
on the structure of the flux f are made (apart smoothness), and this estimate is the natural extension

of the Glimm type interaction estimate for genuinely nonlinear systems.

More precisely we obtain the following results:
• a new analysis of the interaction estimates of simple waves;

• a Lagrangian representation of the derivative of the solution, i.e. a map x(t, w) which follows the

trajectory of each wave w from its creation to its cancellation;
• the introduction of the characteristic interval and partition for couples of waves, representing the

common history of the two waves;
• a new functional Q controlling the variation in speed of the waves w.r.t. time.

This last functional is the natural extension of the Glimm functional for genuinely nonlinear systems.

The main result is that the distribution Dttx(t, w) is a measure with total mass ≤ O(1)Tot.Var.(u0)2.

Preprint SISSA 51/2014/MATE
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1. Introduction

Consider a hyperbolic system of conservation laws

(1.1)

{
ut + f(u)x = 0,

u(0, x) = u0(x),

where u0 ∈ BV (R,Rn), f : Rn → Rn smooth (by smooth we mean at least of class C3(Rn,Rn)) and
strictly hyperbolic. We are interested in the proof of an interaction estimate, quadratic w.r.t. the total
variation of the initial data u0, which has been considered in the literature and used to prove sharp
convergence and stability results [3, 11, 12, 2].

The quadratic estimate we are concerned with, can be easily explained in the case of a wavefront
solution to (1.1) [8]. Let {tj}j=1,...,J be the times at which two wavefronts w,w′ meet; each tj can be an
interaction time if the wavefronts w,w′ belong to the same family and have the same sign; a cancellation
time, if w,w′ belong to the same family and have opposite sign; a transversal interaction time if w,w′

belong to different families; a non-physical interaction time if at least one among w,w′ is a non-physical
wavefront (for a precise definition see Definition 3.2 in [7]).

In a series of papers [3, 11, 12, 2] the following estimate has been discussed:

(1.2)
∑

tj interaction

|σ(w)− σ(w′)||w||w′|
|w|+ |w′|

≤ O(1)Tot.Var.(u0)2.

In the above formula w,w′ are the wavefronts which interact at time tj , σ(w) (resp. σ(w′)) is the speed
of the wavefront w (resp. w′) and |w| (resp. |w′|) is its strength. By O(1) we denote a constant which
depends only on the flux function f .

As it is shown in [2, 6], the proofs presented in the above papers contain glitches/missteps, which
justified the publication of a new and different proof in [6] and in [7].

In particular, the paper [6] considers the simplest case at the level of (1.1), namely the scalar case
u ∈ R, and shows that even in this situation the analysis is already quite complicated: in fact, one has to
follow the evolution of every elementary component of a wavefront, which we call wave (see [6, Sections
3.1 and 4.1], [7, Section 2 and Definition 3.3] or Section 4.1 below), an idea present also in [3]. One of
the conclusions of the analysis in [6] is that the functional used to obtain the bound (1.2) is non-local
in time, a situation very different from the standard Glimm interaction analysis of hyperbolic systems of
conservation laws.

In the second paper [7] the authors study how the same estimate can be proved in the presence of
waves of different families. For this aim, the most simple situation is considered, namely the Temple-class
triangular system (see [13] for the definition of Temple class systems){

ut + f̃(u, v)x = 0,

vt − vx = 0,

with ∂f̃
∂u > −1, so that local uniform hyperbolicity is satisfied. The main novelties introduced in the proof

of this case are:
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(1) the definition of an effective flux function, which contains all the information about the “convex-
ity/concavity” of each characteristic family, [7, Section 3.4];

(2) a new choice of the weights for couple of waves, which take into account the presence of the
wavefronts of the other family, [7, Section 4.2];

(3) the construction of a tree at each interaction: this tree describes the past history of all the waves
involved in the interaction from the time of their last splitting, [7, Section 4.3].

The assumption on the triangular structure of the system allows to reduce the analysis to a non au-
tonomous scalar PDE

wt +

(
∂f

∂w
(w, v)

)
wx = 0,

for some smooth (C3-)function f such that ∂f
∂w > −1, thus granting several simplifications.

Aim of this paper is to complete the proof of (1.2) in the general case. Even if a similar analysis can
be done for wavefront tracking approximations, we choose to prove the quadratic estimate (1.2) in the
case of the Glimm approximation scheme for two reasons.

First it is mathematically simpler.
On one hand, in fact, it requires the introduction of the quadratic amount of interaction for two merging
Riemann problems (Definition 3.1), a new quantity not appeared before in the literature: we need this
quantity because the Glimm restarting procedure merges Riemann problems at each time step, while
wavefront tracking considers only binary interactions. The quadratic amount of interaction is interesting
by itself.
On the other hand, once the analysis of two merging Riemann problems has been studied, the scheme
proceeds flawlessly, because one does not need to study the various Riemann solver (accurate, approximate
and brute, [1]).

Secondly, it is the original situation studied in [3], with the aim of obtaining an explicit rate of
convergence for the Glimm scheme. With the result proved here, Theorem 1 of [3] is now correct.

After this brief introduction, we now present the main result of the paper.

1.1. Main result. Consider a general system of conservation laws

(1.3) ut + f(u)x = 0,

where f : Ω ⊆ Rn → Rn is a smooth function (at least C3), defined on a neighborhood Ω of ǔ ∈ Rd,
satisfying the strict hyperbolicity assumption, i.e. for any u ∈ Ω, the Jacobian matrix A(u) := Df(u) has
n real distinct eigenvalues λ1(u) < · · · < λn(u). Together with (1.3) we consider the initial datum

(1.4) u(0, x) := u0(x) ∈ BV(R).

As usual, denote by {rk}k ({lk}k) the basis of right (left) eigenvalues, normalized by

|rk(u)| = 1, 〈lk(u), rh(u)〉 =

{
1, k = h,

0, k 6= h.

W.l.o.g. we assume ǔ = 0 and {λk(u)} ⊆ [0, 1]. Since we will consider only solutions with small total
variation, taking values in a relatively compact neighborhood of the origin, we can also assume that all

the derivatives of f are bounded on Ω and that there exist constant λ̂0, . . . , λ̂n such that

(1.5) 0 < λ̂k−1 < λk(u) < λ̂k < 1, for any u ∈ Ω, k = 1, . . . , n.

When the initial datum has the particular form

u(0, x) =

{
uL x ≥ 0,

uR x < 0,

the Cauchy problem (1.3)-(1.4) is called the Riemann problem (RP) (uL, uR).
Let (uL, uM ), (uM , uR) be two Riemann problems with a common state uM , and consider the Riemann

problem (uL, uR). It is well known (see [8, 9], or Section 2.1) that if |uM − uL|, |uR − uM | � 1, then one
can solve the three Riemann problems as follows:

uM = Tns′n ◦ · · · ◦ T
1
s′1
uL, uR = Tns′′n ◦ · · · ◦ T

1
s′′1
uM , uR = Tnsn ◦ · · · ◦ T

1
s1u

L,
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where for each k = 1, . . . , n, s′k, s
′′
k , sk ∈ R and (s, u) 7→ T ks u is the map which at each left state u associates

the right state T ks u such that the Riemann problem (u, T ks u) has an entropy admissible solution made
only by wavefronts with total strength |s| belonging to the k-th family. This smooth curve is called k-th
admissible curve and it is parameterized such that d

dsT
k
s u = rk(u). We will also use the notation T ks (u).

We are interested in studying how much the speed of the wavefronts of the two incoming Riemann
problems can change after the collision. More precisely, for each family k, writing for brevity (formula
(1.10))

I(s) =
[

min{s, 0},max{s, 0}
]
\ {0},

let us denote by

σ′k : I(sk)→ (λ̂k−1, λ̂k)
the speed function of the wavefronts of the k-th family for
the Riemann problem (uL, uM ),

σ′′k : s′k + I(s′′k)→ (λ̂k−1, λ̂k)
the speed function of the wavefronts of the k-th family for
the Riemann problem (uM , uR),

σk : I(sk)→ (λ̂k−1, λ̂k)
the speed function of the wavefronts of the k-th family for
the Riemann problem (uL, uR).

and consider the L1-norm of the speed difference between the waves of the Riemann problems (uL, uM ),
(uM , uR) and the outgoing waves of (uL, uR):

∆σk(uL, uM , uR) :=


∥∥(σ′k ∪ σ′′k)− σk∥∥L1(I(s′k+s′′k )∩I(sk))

if s′ks
′′
k ≥ 0,∥∥(σ′k M σ′′k)− σk∥∥L1(I(s′k+s′′k )∩I(sk))

if s′ks
′′
k < 0,

where σ′k ∪ σ′′k is the function obtained by piecing together σ′k, σ′′k , while σ′k M σ
′′
k is the restriction of σ′k

to I(s′k + s′′k) if |s′k| ≥ |s′′k | or σ′′kxI(s′k+s′′k ) in the other case, see formulas (1.11), (1.12).

Now consider a right continuous ε-approximate solution constructed by the Glimm scheme (see Section
2.3); by simplicity, for any grid point (iε,mε) denote by

∆σk(iε,mε) := ∆σk(ui,m−1, ui−1,m−1, ui,m)

the change in speed of the k-th wavefronts at the grid point (iε,mε) arriving from points (iε, (m− 1)ε),
((i − 1)ε, (m − 1)ε), where uj,r := u(jε, rε). The main result of this paper is that the sum over all grid
points of the change in speed is bounded by a quantity which depends only on the flux f and the total
variation of the initial datum and does not depend on ε. More precisely, the theorem we prove is the
following.

Theorem 1.1. It holds
+∞∑
i=1

∑
m∈Z

∆σk(iε,mε) ≤ O(1)Tot.Var.(u0;R)2,

where O(1) is a quantity which depends only on the flux f .

The proof of Theorem 1.1 follows a classical approach used in hyperbolic system of conservation laws
in one space dimension.

We first prove a local estimate. For the couple of Riemann problems (uL, uM ), (uM , uR), we define
the quantity

A(uL, uM , uR) := Atrans(uL, uM , uR)

+

n∑
h=1

(
A

quadr
h (uL, uM , uR) + Acanc

h (uL, uM , uR) + Acubic
h (uL, uM , uR)

)
,

(1.6)

which we will call the global amount of interaction of the two merging RPs (uL, uM ), (uM , uR). Three
of the terms in the r.h.s. of (1.6) have already been introduced in the literature, namely

Atrans(uL, uM , uR) is the transversal amount of interaction (see [10] and Definition 2.5);

Acanc
h (uL, uM , uR) is the amount of cancellation of the h-th family (see Definition 2.8);

Acubic
h (uL, uM , uR) is the cubic amount of interaction of the h-th family (see [4] and Definition 2.6).
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The term A
quadr
h (uL, uM , uR), which we will call the quadratic amount of interaction (see Definition 3.1),

is introduced for the first time here.
The local estimate we will prove is the following: for all k = 1, . . . , n,

(1.7) ∆σk(uL, uM , uR) ≤ O(1)A(uL, uM , uR).

This is done in Section 3, Theorem 3.3.
Next we show a global estimate, based on a new interaction potential. For any grid point (iε,mε)

define
A(iε,mε) := A(ui,m−1, ui−1,m−1, ui,m)

as the amount of interaction at the grid point (iε,mε), and similarly let Atrans(iε,mε), Acanc
h (iε,mε),

Acubic
h (iε,mε), A

quadr
h (iε,mε) be the transversal amount of interaction, amount of cancellation, cubic

amount of interaction at the grid point (iε,mε), respectively.
We will introduce a new interaction potential Υ with the following properties:

(1) it is uniformly bounded at time t = 0: in fact,

Υ(0) ≤ O(1)Tot.Var.(u0;R)2;

(2) it is constant on time intervals [(i− 1)ε, iε);
(3) at any time iε, it decreases at least of 1

2

∑
m∈Z A(iε,mε).

It is fairly easy to see that Points (1), (2), (3) above, together with inequality (1.7), imply Theorem 1.1.
The potential Υ is constructed as follows. We define a functional t 7→ Q(t), constant in the time inter-

vals [(i− 1)ε, iε) and bounded by O(1)Tot.Var.(u0;R)2 at t = 0, which satisfies the following inequality
(see Theorem 6.3):

Q(iε)−Q((i− 1)ε) ≤ −
∑
m∈Z

n∑
h=1

Aquadr(iε,mε) +O(1)Tot.Var.(u0;R)
∑
m∈Z

A(iε,mε)

= −
(
1−O(1)Tot.Var.(u0;R)

) ∑
m∈Z

n∑
h=1

Aquadr(iε,mε)

+O(1)Tot.Var.(u0;R)
∑
m∈Z

Atrans(iε,mε)

+O(1)Tot.Var.(u0;R)
∑
m∈Z

n∑
h=1

(
Acanc
h (iε,mε) + Acubic

h (iε,mε)

)
.

(1.8)

It is well known (see [10], [4] and Section 2.4) that there exists a uniformly bounded, decreasing potential
Qknown(t) such that at each time iε

(1.9)
∑
m∈Z

[
Atrans(iε,mε) +

n∑
h=1

(
Acanc
h (iε,mε) + Acubic

h (iε,mε)
)]
≤ Qknown((i− 1)ε)−Qknown

(
iε
)
.

Hence, it is straightforward to see from (1.8), (1.9) that we can find a constant C big enough, such that
the potential

Υ(t) := Q(t) + CQknown(t)

satisfies Properties (1)-(3) above, provided that Tot.Var.(u0;R)� 1.

1.2. Structure of the paper. The paper is organized as follows.
In Section 2 we recall some preliminary results, already present in the literature, which we will use

thoroughly in the paper.
In Section 2.1 we show how an entropic self-similar solution to the Riemann problem (uL, uR) is con-
structed, focusing our attention especially on the proof of the existence of the elementary curves of a fixed
family. Even if the main ideas are similar to the standard proof found in the literature (see for instance
[5]), we need to use a slightly different distance among elementary curves, see (2.7): this because we need
sharper estimate on the variation of speed.
In Section 2.2 we recall the definitions of some quantities which in some sense measure how strong is the
interaction between two contiguous Riemann problems which are merging and we present some related
results: these quantities are the transversal amount of interaction (Definition 2.5), the cubic amount
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of interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8).
In Section 2.3 we review how a family of approximate solutions {uε(t, x)}ε>0, to the Cauchy problem
(1.3)-(1.4) is constructed by means of the Glimm scheme.
Finally in Section 2.4 we recall the definitions of some already known functionals, which provide a
uniform-in-time bound on the spatial total variation of the approximate solution uε.

Section 3 is devoted to prove the local part of the proof of Theorem 1.1, as explained in Section 1.1.
In particular we will consider two contiguous Riemann problems (uL, uM ), (uM , uR) which are merging,
producing the Riemann problem (uL, uR) and we will introduce a global amount of interaction A, which
bounds

(1) the L∞-distance between the u-component of the elementary curves before and after the inter-
action;

(2) the L1-distance between the speed of the wavefronts before and after the interaction, i.e. the
σ-component of the elementary curves;

(3) the L1-distance between the second derivatives of the reduced fluxes, before and after the inter-
action.

This is done in Theorem 3.3.
In Section 3.1 we introduce the first novelty of the paper, i.e. the notion of quadratic amount of interaction

A
quadr
k for waves belonging to the k-th characteristic family. Adding this new functional to the classical

transversal amount of interaction, cubic amount of interaction and amount of cancellation we obtain the
total amount of interaction, Definition 3.2.
The important fact about the total amount of interaction is that it bounds the variation of the elementary
curves when two Riemann problems are merged, Theorem 3.3 of Section 3.2. The proof of Theorem 3.3 is
given in the next three subsections. In Section 3.2.1 we prove some basic estimates related to translations
of the starting point of the curve which solves a Riemann problem and to changes of the length of such a
curve; in Section 3.2.2 we consider the situation in which each of the two incoming Riemann problems is
solved by a wavefront of a single family k; in Section 3.2.3 we conclude the proof of Theorem 3.3, piecing
together the analysis of the previous two cases.

In Section 4 we define the notion of Lagrangian representation of an approximate solution uε (Section
4.1) obtained by the Glimm scheme to the Cauchy problem (1.3)-(1.4), and we explicitly construct a
Lagrangian representation satisfying some useful additional properties (Section 4.2). In the final Section
4.3 we introduce some notions related to the Lagrangian representation; in particular, the notion of
effective flux feff

k (t) of the k-th family at time t will have a major role in the next sections.
Starting with Section 5 we enter in the heart of our construction.

In Section 5.1 we define an equivalence relation on the waves of the k-th characteristic family, which
allows to work only with finitely many equivalence classes instead of a continuum of waves.
In Section 5.2 we introduce the notion of characteristic interval of waves I(t̄, w, w′) for any couple of waves
w,w′: roughly speaking, the idea is that the waves outside this interval are not essential in computing
the strength of the interaction of w,w′. In order to define this interval, we introduce the notion of pair
of waves (w,w′) which have already interacted and pair of waves (w,w′) which have never interacted at
time t̄.
In Section 5.3 we give a partition P(t̄, w, w′) of this interval: the elements of this partition are waves with
the same past history, from the moment in which one of them is created.

Now we have all the tools we need to define the functional Qk for k = 1, . . . , n and to prove that it
satisfies the inequality (1.8), thus obtaining the global part of the proof of Theorem 1.1. This is done in
the final Section 6.
In Section 6.1 we give the definition of Qk, using the intervals I(t̄, w, w′) and their partitions P(t̄, w, w′).
The idea is to adopt the form of the analogous functional Q introduced first in [6] and then further
developed in [7]: it is an integral among all couples of waves w,w′ of a weight qk(t, w,w′) obtained
(roughly speaking) by

qk(t, w,w′) ≈ difference in speed of w,w′ for the Riemann problem in I(t, w,w′) with the flux feff
k

length of the interval I(t, w,w′)
.
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The precise form is slight more complicated, in order to minimize the oscillations of qk in time.
In Section 6.2 we state the main theorem of this last part of the paper, i.e. inequality (1.8) and we give
a sketch of its proof, which will be written down in all its details in the next subsections.
In Sections 6.3, we first study the increase of Q for couples of waves one of which has been created at
the time of interaction. The main result (Proposition 6.4) is that this increase is controlled by the total
amount of interaction times the total variation of the solution.
In Section 6.4, we study how the weight varies for couple of waves which are not interacting at the given
time, and again in Theorem 6.5 we prove that it is controlled by the total amount of interaction times
the total variation of the solution.
Finally in Section 6.5, Theorem 6.5 computes the decaying part of the functional, due to couple of waves

which are involved in the same Riemann problem: it turns out that the decay is exactly A
quadr
k (plus

the total amount of interaction times the total variation of the solution), and this concludes the proof of
Theorem 1.1.

We conclude the paper with Appendix A, where we collect some elementary results on convex envelopes
and secant lines used thoroughly in the paper.

1.3. Notations.

• For any s ∈ R, define

(1.10) I(s) :=

{
(0, s] if s ≥ 0,

[s, 0) if s < 0.

• Let X be any set and let f : I(s′)→ X, g : s′ + I(s′′)→ X;
– if s′s′′ ≥ 0 and f(s′) = g(s′), define

(1.11) f ∪ g : I(s′ + s′′)→ X,
(
f ∪ g

)
(x) :=

{
f(x) if x ∈ I(s′),

g(x) if x ∈ s′ + I(s′′);

– if s′s′′ < 0, define

(1.12) f M g : I(s′ + s′′)→ X, (f M g)(x) :=

{
f(x) if |s′| ≥ |s′′|, x ∈ I(s′ + s′′),

g(x− s′) if |s′| < |s′′|, x ∈ I(s′ + s′′).

• For a continuous real valued function f , we denote its convex envelope in the interval [a, b] as
conv
[a,b]

f .

• Given a totally ordered set (A,�), we define a partial pre-ordering on 2A setting, for any I, J ⊆ A,

I ≺ J if and only if for any a ∈ I, b ∈ J it holds a ≺ b.
We will also write I � J if either I ≺ J or I = J , i.e. we add the diagonal to the relation, making
it a partial ordering.

• The L∞ norm of a map g : [a, b] → Rn will be denoted either by ‖g‖∞ or by ‖g‖L∞([a,b]), if we

want to stress the domain of g; similar notation for the L1-norm.
• Given a C1 map g : R→ R and an interval I ⊆ R, possibly made by a single point, let us define

σrh(g, I) :=


g(sup I)− g(inf I)

sup I − inf I
, if I is not a singleton,

dg

du
(I), if I is a singleton.

2. Preliminary results

In this section we recall some preliminary results, already present in the literature, which we will use
in the next sections.

In Section 2.1 we show how an entropic self-similar solution to the Riemann problem (uL, uR) is
constructed, focusing our attention especially on the proof of the existence of the elementary curves of
a fixed family. Even if the main ideas are similar to the standard proof found in the literature (see for
instance [5]), we need to use a slightly different distance among elementary curves, see (2.7): this because
we need sharper estimate on the variation of speed.



8 STEFANO BIANCHINI AND STEFANO MODENA

In Section 2.2 we recall the definitions of some quantities which in some sense measure how strong is
the interaction between two contiguous Riemann problems which are joining and we present some related
results: these quantities are the transversal amount of interaction (Definition 2.5), the cubic amount
of interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8).

In Section 2.3 we review how a family of approximate solutions {uε(t, x)}ε>0, to the Cauchy problem
(1.3)-(1.4) is constructed by means of the Glimm scheme.

Finally in Section 2.4 we recall the definitions of some already known functionals, which provide a
uniform-in-time bound on the spatial total variation of the approximate solution uε.

2.1. Entropic self-similar solution to the Riemann problem. We describe here the method devel-
oped in [5], with some minimal variations, to construct a solution to the Riemann problem (uL, uR), i.e.
the system (1.3) together with the initial datum

(2.1) u(0, x) =

{
uL, x ≥ 0,

uR, x < 0,

provided that |uR−uL| is small enough. First we present the algorithm used to build the solution to the
Riemann problem (uL, uR) and then we focus our attention on the construction of the elementary curves
of a fixed family.

2.1.1. Algorithm for solving the Riemann problem. The following proposition holds.

Proposition 2.1. For all δ2 > 0 there exists 0 < δ1 < δ2 such that for any uL, uR ∈ B(0, δ1) the Riemann
problem (1.3), (2.1) admits a unique, self-similar, right continuous, vanishing viscosity solution, taking
values in B(0, δ2).

Sketch of the proof. Step 1. For any index k ∈ {1, . . . , n}, through a Center Manifold technique, one can
find a neighborhood of the point (0, 0, λk(0)) of the form

Dk :=
{

(u, vk, σk) ∈ Rn × R× R
∣∣ |u| ≤ ρ, |vk| ≤ ρ, |σk − λk(0)| ≤ ρ

}
for some ρ > 0 (depending only on f) and a smooth vector field

r̃k : Dk → Rn, r̃k = r̃k(u, vk, σk),

satisfying

(2.2) r̃k(u, 0, σk) = r̃k(u),

∣∣∣∣ ∂r̃k∂σk
(u, vk, σk)

∣∣∣∣ ≤ O(1)
∣∣vk∣∣.

We will call r̃k the k-generalized eigenvector. The characterization of r̃k is that

Dk 3 (u, vk, σk) 7→
(
u, vkr̃k, σk

)
∈ Rn × Rn × R

is a parameterization of a center manifold near the equilibrium (0, 0, λk(0)) ∈ Dk for the ODE of traveling
waves (

A(u)− σI
)
ux = uxx ⇐⇒


ux = v

vx = (A(u)− σI)v
σx = 0

where A(u) = Df(u), the Jacobian matrix of the flux f , and I is the identity n× n matrix.

Associated to the generalized eigenvectors, we can define smooth functions λ̃k : Dk → R by

λ̃k(u, vk, σk) :=
〈
lk(u), A(u)r̃k(u, vk, σk)

〉
.

We will call λ̃k the k-generalized eigenvalue. By (2.2) and the definition of λ̃k, we can get

(2.3) λ̃k(u, 0, σk) = λk(u),

∣∣∣∣∂λ̃k∂σk
(u, vk, σk)

∣∣∣∣ ≤ O(1)|vk|.

For the construction of the generalized eigenvectors and eigenvalues and the proof of (2.2), (2.3), see
Section 4 of [5].
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Step 2. By a fixed point technique one can now prove that there exist δ, η > 0 (depending only on f),
such that for any

k ∈ {1, . . . , n}, uL ∈ B(0, ρ/2), 0 ≤ s < η,

there is a curve
γ : [0, s] → Dk

τ 7→ γ(τ) = (u(τ), vk(τ), σk(τ))

such that u, vk ∈ C1,1([0, s]), σk ∈ C0,1([0, s]), it takes values in B(uL, δ)×B(0, δ)×B(λk(uL), δ) and it
is the unique solution to the system

(2.4)



u(τ) = uL +

∫ τ

0

r̃k(γ(ς))dς

vk(τ) = fk(γ; τ)− conv
[0,s]

fk(γ; τ)

σk(τ) =
d

dτ
conv
[0,s]

fk(γ; τ)

where

(2.5) fk(γ; τ) :=

∫ τ

0

λ̃k(γ(ς))dς.

In the case s < 0 a completely similar result holds, replacing the convex envelope with the concave one.
If we want to stress the dependence of the curve γ on uL and s we will use the notation

γ(uL, s)(τ) =
(
u(uL, s)(τ), vk(uL, s)(τ), σk(uL, s)(τ)

)
.

Even if the existence and uniqueness of such a curve is known, we give a proof in Section 2.1.2, since
we need to use a definition of distance among curves slightly different from the one in [5].

Step 3. Once the curve γ solving (2.4) is found, one can prove the following lemma.

Lemma 2.2. Let γ : [0, s] → Dk, γ(uL, s)(τ) = (u(τ), vk(τ), σk(τ)), be the Lipschitz curve solving the
system (2.4) and define the right state uR := u(s). Then the unique, right continuous, vanishing viscosity
solution of the Riemann problem (uL, uR) is the function

ω(t, x) :=


uL if x/t ≤ σk(0),

u(τ) if x/t = max{ξ ∈ [0, s] | x/t = σk(ξ)},
uR if x/t ≥ σk(s).

For the proof see Lemma 14.1 in [5]. The case s < 0 is completely similar.

Step 4. By previous step, for any k ∈ {1, . . . , n}, uL ∈ B(0, ρ/2), there is a curve

(−η, η) 3 s 7→ T ks (uL) := u(uL, s)(s) ∈ B(uL, δ) ⊆ Rn

such that the Riemann problem (uL, T ks (uL)) admits a self similar solution consisting only of k-waves.

Lemma 2.3. The curve s 7→ T ks (uL) is Lipschitz continuous and

(2.6) ess lim
s→0

dT ks (uL)

ds
= rk(uL).

For the proof see Lemma 14.3 in [5].

Step 5. Thanks to (2.6), the solution to the general Riemann problem (1.3), (2.1) can be now constructed
following a standard procedure (see for example [9, Chapter 9]). One considers the composite map

T (uL) : (−η, η)n → Rn

(s1, . . . , sn) 7→ T (uL)(s1, . . . , sn) := Tnsn ◦ · · · ◦ T
1
s1(uL)

By (2.6) and a version of the Implicit Function Theorem valid for Lipschitz continuous maps, T (uL) is a
one-to-one mapping from a neighborhood of the origin in Rn onto a neighborhood of uL. Hence, for all
uR sufficiently close to uL (uniformly w.r.t. uL ∈ B(0, ρ/2)), one can find unique values s1, . . . , sn such
that T (uL)(s1, . . . , sn) = uR.
In turn, this yields intermediate states u0 = uL, u1, . . . , un = uR such that each Riemann problem with
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data (uk−1, uk) admits a vanishing viscosity solution ωk = ωk(t, x) consisting only of k-waves. By the
assumption (1.5) we can define the solution to the general Riemann problem (uL, uR) by

ω(t, x) = ωk(t, x) for λ̂k−1 <
x

t
< λ̂k.

Therefore we can choose δ1, δ2 � 1 such that if uL, uR ∈ B(0, δ1), the Riemann problem (uL, uR) can be
solved as above and the solution takes values in B(0, δ2), thus concluding the proof of the proposition. �

2.1.2. Proof of Step 2. We now explicitly prove that the system (2.4) admits a C1,1×C1,1×C0,1-solution,
i.e. we prove Step 2 of the previous algorithm, using the Contraction Mapping Principle. As we said, we
need a proof slightly different from the one in [5]: in fact, even if the general approach is the same, the
distance used among curves is suited for the type of estimates we are interested in.

Fix an index k = 1, . . . , n and consider the space

X := C0
(
[0, s];Rn

)
× C0

(
[0, s]

)
× L1

(
[0, s]

)
A generic element of X will be denoted by γ = (u, vk, σk). The index k is just to remember that we are
solving a RP with wavefronts of the k-th family. Endow X with the norm

(2.7) ‖γ‖† =
∥∥(u, vk, σk)

∥∥
† := ‖u‖∞ + ‖vk‖∞ + ‖σk‖1

and consider the subset

Γk(uL, s) :=

{
γ = (u, vk, σk) ∈ X : u, vk are Lipschitz and Lip(u) + Lip(vk) ≤ L,

u(0) = uL, vk(0) = 0,

|u(τ)− uL| ≤ δ, |vk(τ)| ≤ δ for any τ ∈ [0, s],

|σk(τ)− λk(uL)| ≤ δ for L1 − a.e.τ ∈ [0, s]

}
for uL ∈ B(0, ρ) and L, s, δ > 0 which will be chosen later. Clearly Γk(uL, s) is a closed subset of the
Banach space X and thus it is a complete metric space. Denote by D the distance induced by the norm
‖ · ‖† on X.

Consider now the transformation

T : Γk(uL, s) → L∞([0, s],Rn+2)

γ 7→ γ̂ := T γ

defined by the formula 

û(τ) := uL +

∫ τ

0

r̃k(γ(ς))dς,

v̂k(τ) := fk(γ; τ)− conv
[0,s]

fk(γ; τ),

σ̂k(τ) :=
d

dτ
conv
[0,s]

fk(γ; τ),

where fk has been defined in (2.5). Observe that, since λ̃k is uniformly bounded near (uL, 0, λk(uL)), it
turns out that fk(γ) is a Lipschitz function for any γ ∈ Γk(uL, s), and thus by Theorem A.3, Point (1),
conv
[0,s]

fk(γ) : [0, s]→ R is Lipschitz and its derivative is in L∞([0, s],R).

Lemma 2.4. There exist L, η, δ > 0 depending only on f such that for all fixed uL ∈ B(0, ρ/2) it holds:

(1) for any |s| < η, T is a contraction from Γk(uL, s) into itself, more precisely∥∥T (γ)− T (γ′)
∥∥
† ≤

1

2

∥∥γ − γ′∥∥†;
(2) if γ̄ = (ū, v̄k, σ̄k) is the fixed point of T , then ū, v̄k ∈ C1,1 and σ̄k ∈ C0,1.

Clearly Point (2) above yields Step 2 of the proof of Proposition 2.1.
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Proof. Step 1. We first prove that if γ ∈ Γk(uL, s), then γ̂ = (û, v̂k, σ̂k) := T (γ) ∈ Γ(uL, s), provided
L� 1, η � 1, while δ will be fixed in the next step.

Clearly û(0) = uL and v̂k(0) = 0. Moreover û, v̂k are Lipschitz continuous and σ̂k is in L∞([0, s]).
Let us prove the uniform estimate on the Lipschitz constants. First we have

∣∣û(τ2)− û(τ1)
∣∣ ≤ ∫ τ2

τ1

∣∣r̃k(γ(ς))
∣∣dς ≤ ‖r̃k‖∞|τ2 − τ1| ≤ L

2

∣∣τ2 − τ1∣∣.
if the constant L is big enough. For vk it holds

∣∣v̂k(τ2)− v̂k(τ1)
∣∣ ≤ ∣∣fk(γ; τ2)− fk(γ; τ1)

∣∣+
∣∣∣ conv

[0,s]
fk(γ; τ2)− conv

[0,s]
fk(γ; τ1)

∣∣∣
(by Theorem A.3, Point (1)) ≤ 2 Lip

(
fk(γ)

)∣∣τ2 − τ1∣∣ ≤ 2
∥∥λ̃k∥∥∞∣∣τ2 − τ1∣∣

≤ L

2

∣∣τ2 − τ1∣∣,
if L is big enough.

Finally let us prove tat the curve γ remains uniformly close to the point (uL, 0, λk(uL)). First we have

∣∣û(τ)− uL| ≤
∫ τ

0

∣∣r̃k(γ(ς))
∣∣dς ≤ ‖r̃k‖∞|τ | ≤ ‖r̃k‖∞|η| ≤ δ,

if η � 1. Next it holds

∣∣v̂k(τ)
∣∣ ≤ ∣∣f̃k(γ; τ)

∣∣+
∣∣ conv

[0,s]
f̃k(γ; τ)

∣∣
≤
∫ τ

0

∣∣∣∣df̃k(γ; ς)

dς

∣∣∣∣dς +

∫ τ

0

∣∣∣∣ ddς conv
[0,s]

f̃k(γ; ς)

∣∣∣∣dς
(by Proposition A.6) ≤ 2

∫ τ

0

∣∣(λ̃k ◦ γ)(ς)
∣∣dς

≤ ‖λ̃k‖∞
∣∣η∣∣ ≤ δ,

if η � 1. Finally, before making the computation for σk, let us observe that

∣∣∣∣df̃k(γ; τ)

dτ
− λk(τ)

∣∣∣∣ ≤ ∣∣∣λ̃k(u(τ), vk(τ), σk(τ)
)
− λ̃k

(
uL, 0, σk(τ)

)∣∣∣
≤ O(1)

(∣∣u(τ)− uL
∣∣+
∣∣vk(τ)

∣∣)
≤ O(1)

(
Lip(u) + Lip(vk)

)
η

≤ O(1)Lη ≤ δ,

if η � 1.
We have thus proved that we can choose L � 1, η � 1 such that γ̂ := T (γ) ∈ Γ(uL, s). Notice that

the choice of L, η depends only on f and δ and not on uL ∈ B(0, δ/2).

Step 2. We now prove that the map T : Γ(uL, s) → Γ(uL, s) is a contraction. Let γ = (u, vk, σk), γ′ =
(u′, v′k, σ

′
k) ∈ Γ(uL, s) and set

γ̂ = (û, v̂k, σ̂k) := T (γ), γ̂′ = (û′, v̂′k, σ̂
′
k) := T (γ′).
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It holds for the component u

∣∣û(τ)− û′(τ)
∣∣ ≤ ∫ τ

0

∣∣r̃k(γ(ς))− r̃k(γ′(ς))
∣∣dς

≤
∫ τ

0

(∥∥∥∥∂r̃k∂u
∥∥∥∥
∞

∣∣u(ς)− u′(ς)
∣∣+

∥∥∥∥∂r̃k∂vk

∥∥∥∥
∞

∣∣vk(ς)− v′k(ς)
∣∣+

∥∥∥∥ ∂r̃k∂σk

∥∥∥∥
∞

∣∣σk(ς)− σ′k(ς)
∣∣)dς

(by (2.2)) ≤ O(1)

∫ τ

0

(∣∣u(ς)− u′(ς)
∣∣+
∣∣vk(ς)− v′k(ς)

∣∣+ δ
∣∣σk(ς)− σ′k(ς)

∣∣)dς
≤ O(1)D(γ, γ′)(η + δ)

≤ 1

2
D(γ, γ′),

(2.8)

if η, δ � 1.
For the component vk we have∣∣v̂k(τ)− v̂′k(τ)

∣∣ ≤ ∣∣f̃k(γ; τ)− f̃k(γ′; τ)
∣∣+
∣∣ conv

[0,s]
f̃k(γ; τ)− conv

[0,s]
f̃k(γ′; τ)

∣∣
(by Proposition A.6) ≤ 2

∥∥f̃k(γ)− f̃k(γ′)
∥∥
∞

≤ 2

∥∥∥∥df̃k(γ)

dτ
− df̃k(γ′)

dτ

∥∥∥∥
1

= 2

∫ s

0

∣∣∣λ̃k(γ(τ)
)
− λ̃k

(
γ′(τ)

)∣∣∣dτ
(using (2.3) as in (2.8)) ≤ 1

2
D(γ, γ′),

(2.9)

if η, δ � 1.
Finally

∥∥σ̂k − σ̂′k∥∥1
≤
∫ s

0

∣∣∣λ̃k(γ(ς)
)
− λ̃k

(
γ′(τ)

)∣∣∣ ≤ 1

2
D(γ, γ′),

if η, δ � 1 using (2.3) as in (2.9).
Hence T is a contraction from Γ(uL, s) into itself, with contractive constant equal to 1/2, provided

η, δ � 1.

Step 3. Let us now prove the second part of the lemma, concerning the regularity of the fixed point
γ̄ = (ū, v̄k, σ̄k).

Fix a big constant M > 0 and let A(M) ⊆ Γ(uL, s) be the subset which contains all the curves
γ = (u, vk, σk) such that σk is Lipschitz with Lip(σk) ≤ M . Clearly A(M) is non empty and closed in
X. We claim that T (A(M)) ⊆ A(M) if M is big enough and δ, η small enough. This will conclude the
proof of the lemma.

Let γ ∈ A(M) and, as before, γ̂ = (û, v̂k, σ̂k) := T (γ). Let us first compute the Lipschitz constant of
df̃k(γ)
dτ :

∣∣∣∣df̃k(γ; τ2)

dτ
− df̃k(γ; τ1)

dτ

∣∣∣∣ =
∣∣∣λ̃k(γ(τ2))− λ̃k(γ(τ1))

∣∣∣
≤ O(1)

∣∣∣(Lip(u) + Lip(vk) + δLip(σk)
)∣∣∣|τ2 − τ1|

≤ O(1)(2L+ δM)
∣∣τ2 − τ1∣∣

≤M
∣∣τ2 − τ1∣∣,
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if 0 < δ � 1 and M � 1. Now observe that∣∣σ̂k(τ2)− σ̂k(τ1)
∣∣ ≤ ∣∣∣∣ ddτ conv

[0,s]
f̃k(γ; τ2)− d

dτ
conv
[0,s]

f̃k(γ; τ1)

∣∣∣∣
≤ Lip

(
d

dτ
conv
[0,s]

f̃k(γ)

)∣∣τ2 − τ1∣∣
(by Theorem A.3, Point (3)) ≤ Lip

(
df̃k(γ)

dτ

)∣∣τ2 − τ1∣∣
≤M

∣∣τ2 − τ1∣∣.
Hence σ̂ is Lipschitz and Lip(σ̂) ≤M , i.e. γ̂ ∈ A(M), if δ � 1 and M � 1. �

2.2. Definition of amounts of interaction, cancellation and creation. In this section we introduce
some quantities, namely the transversal amount of interaction (Definition 2.5), the cubic amount of
interaction (Definition 2.6), the amount of cancellation (Definition 2.8) and the amount of creation
(Definition 2.8), which measure how strong is the interaction between two contiguous Riemann problems
and we present some related results. All these quantities are already present in the literature. In Section
3, we will introduce one more quantity, which will be called the quadratic amount of interaction, and (as
far as we know) has never been defined before.

Consider two contiguous Riemann problem, whose resolution in elementary waves is

(2.10) uM = Tns′n ◦ · · · ◦ T
1
s′1
uL, uR = Tns′′n ◦ · · · ◦ T

1
s′′1
uM ,

and the Riemann problem obtained by joining them, resolved by

uR = Tnsn ◦ · · · ◦ T
1
s1u

L.

Let f ′k, f ′′k be the two reduced fluxes of the k-th waves s′k, s′′k for the Riemann problems (uL, uM ),

(uM , uR), respectively: more precisely, f̃ ′k (f̃ ′′k ) is computed by (2.5) where, for k = 1, . . . , n, γ′k (γ′′k ) is
the solutions of (2.4) with length s′k (s′′k) and initial point

uL for k = 1, T k−1
s′k−1
◦ · · · ◦ T 1

s′1
uL, for k ≥ 2,(

uM for k = 1, T k−1
s′′k−1
◦ · · · ◦ T 1

s′′1
uM , for k ≥ 2.

)
Since (2.4) is invariant when we add a constant to fk, having in mind to perform the merging operations
(1.11), (1.12), we can assume that f ′′k is defined in s′k + I(s′′k) and satisfies f ′′k (s′k) = f ′k(s′k).

Definition 2.5. The quantity

Atrans(uL, uM , uR) :=
∑

1≤h<k≤n

|s′k||s′′h|

is called the transversal amount of interaction associated to the two Riemann problems (2.10).

Definition 2.6. For s′k > 0, we define cubic amount of interaction of the k-th family for the two Riemann
problems (uL, uM ), (uM , uR) as follows:

(1) if s′′k ≥ 0,

Acubic
k (uL, uM , uR) :=

∫ s′k

0

[
conv
[0,s′k]

f ′k(τ)− conv
[0,s′k+s′′k ]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ

+

∫ s′k+s′′k

s′k

[
conv
[s′k,s

′′
k ]
f ′′k (τ)− conv

[0,s′k+s′′k ]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ ;

(2) if −s′k ≤ s′′k < 0

Acubic
k (uL, uM , uR) :=

∫ s′k+s′′k

0

[
conv

[0,s′k+s′′k ]
f ′k(τ)− conv

[0,s′k]
f ′k(τ)

]
dτ

+

∫ s′k

s′k+s′′k

[
conc

[s′k+s′′k ,s
′
k]
f ′k(τ)− conv

[0,s′k]
f ′k(τ)

]
dτ ;
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(3) if s′′k < −s′k,

Acubic
k (uL, uM , uR) :=

∫ 0

s′k+s′′k

[
conc

[s′k+s′′k ,s
′
k]
f ′′k (τ)− conc

[s′k+s′′k ,0]
f ′′k (τ)

]
dτ

+

∫ s′k

0

[
conc

[s′k+s′′k ,s
′
k]
f ′′k (τ)− conv

[0,s′k]
f ′′k (τ)

]
dτ.

Similar definitions can be given if s′k < 0, replacing convex envelopes with concave.

Remark 2.7. The previous definition is exactly Definition 3.5 in [4], where it is also shown that the
terms appearing in the above definition are non negative.

The following definition is standard.

Definition 2.8. The amount of cancellation of the k-th family is defined by

Acanc
k (uL, uM , uR) :=

{
0 if s′ks

′′
k ≥ 0,

min{|s′k|, |s′′k |} if s′ks
′′
k < 0,

while the amount of creation of the k-th family is defined by

Acr
k (uL, uM , uR) :=

[
|sk| − |s′k + s′′k |

]+
.

The following theorem is proved in [4].

Theorem 2.9. It holds
n∑
k=1

∣∣sk − (s′k + s′′k)
∣∣ ≤ O(1)

[
Atrans(uL, uM , uR) +

n∑
k=1

Acubic
k (uL, uM , uR)

]
.

As an immediate consequence, we obtain the following corollary.

Corollary 2.10. It holds

Acr
k (uL, uM , uR) ≤ Atrans(uL, uM , uR) +

n∑
h=1

Acubic
h (uL, uM , uR).

2.3. Glimm scheme solution to a general system of conservation laws. Let us now briefly recall
how an approximate solution to (1.3)is constructed by the Glimm scheme. Fix ε > 0.

To construct an approximate solution uε = uε(t, x) to the Cauchy problem (1.3)-(1.4), we consider a
grid in the (t, x) plane having step size ∆t = ∆x = ε, with nodes in the points

Pi,m = (ti, xm) := (iε,mε), i ∈ N, m ∈ Z.

Moreover we shall need a sequence of real numbers ϑ1, ϑ2, ϑ3, . . . , uniformly distributed over the interval
[0, 1]. This means that, for every λ ∈ [0, 1], the percentage of points ϑi, 1 ≤ i ≤ N , which fall inside [0, λ]
should approach λ as N →∞:

lim
N→∞

card{i | 1 ≤ i ≤ N,ϑi ∈ [0, λ]}
N

= λ for each λ ∈ [0, 1].

At time t = 0, the Glimm algorithm starts by considering an approximation uε(0, ·) of the initial datum
u(0, ·), which is constant on each interval of the form [xm−1, xm) and such that its measure derivative
has compact support. We shall take (remember that u(0, ·) is right continuous)

uε(0, x) = u(0, xm) for all x ∈ [xm, xm+1).

Notice that clearly

Tot.Var.(uε(0);R) ≤ Tot.Var.(u(0);R).

For times t > 0 sufficiently small, the solution uε = uε(t, x) is obtained by solving the Riemann
problems corresponding to the jumps of the initial approximation uε(0, ·) at the nodes xm. By (1.5),
the solutions to the Riemann problems do not overlap on the time interval [0, ε), and thus uε(t) can be
prolonged up to t = ε.
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At time t1 = ε a restarting procedure is adopted: the function uε(t1−, ·) is approximate by a new
function uε(t1, ·) which is piecewise constant, having jumps exactly at the nodes xm = mε. Our approx-
imate solution uε can now be constructed on the further time interval [ε, 2ε), again by piecing together
the solutions of the various Riemann problems determined by the jumps at the nodal points xm. At time
t2 = 2ε, this solution is again approximated by a piecewise constant function, and the procedure goes on.

A key aspect of the construction is the restarting procedure. At each time ti = iε, we need to
approximate uε(ti−, ·) with a piecewise constant function uε(ti, ·) having jumps precisely at the nodal
points xm. This is achieved by a random sampling technique. More precisely, we look at the number ϑi
in the uniformly distributed sequence. On each interval [xm−1, xm), the old value of our solution at the
intermediate point ϑixm + (1− ϑi)xm−1 becomes the new value over the whole interval:

uε(ti, x) := uε
(
ti−, (ϑixm + (1− ϑi)xm−1)

)
for all x ∈ [xm−1, xm).

One can prove that, if the initial datum u(0, ·) has sufficiently small total variation, then an approxi-
mate solution can be constructed by the above algorithm for all times t ≥ 0 and moreover

(2.11) Tot.Var.(uε(t),R) ≤ O(1)Tot.Var.(u(0),R).

The bound (2.11) on the total variation of the function at times t ≥ 0 can be obtained by standard
arguments (see [10], [8]), using Proposition 2.13 and Theorem 2.14 below.

For our purposes, it is convenient to redefine uε inside the open strips (iε, (i+ 1)ε)× R as follows:

uε(t, x) :=

{
uε((i+ 1)ε,mε) if mε ≤ x < mε+ t− iε,
uε(iε,mε) if mε+ t− iε ≤ x < (m+ 1)ε.

In this way, uε(t, ·) becomes a compactly supported, piecewise constant function for each time t ≥ 0 with
jumps along piecewise linear curves passing through the nodes (iε,mε).

To conclude this section, let us introduce some notations which we will be used in the next. For any
grid point (iε,mε), i ≥ 0, m ∈ Z, set

ui,m := uε(iε,mε),

and assume that the Riemann problem (ui,m−1, ui,m) is solved by

ui,m = Tn
si,mn
◦ · · · ◦ T 1

si,m1

ui,m−1;

moreover denote by

σi,mk : I(si,mk )→ R, k = 1, . . . , n,

the speed function of the k-th wavefront solving the Riemann problem (ui,m−1, ui,m).
Let us introduce also the following notation for the transversal and cubic amounts of interaction and

for the amount of cancellation related to the two Riemann problems (ui,m−1, ui−1,m−1), (ui−1,m−1, ui,m)
which interact at grid point (iε, (m− 1)ε):

Atrans(iε,mε) := Atrans(ui,m−1, ui−1,m−1, ui,m),

and for k = 1, . . . , n,

Acubic
k (iε,mε) := Acubic

k (ui,m−1, ui−1,m−1, ui,m),

Acanc
k (iε,mε) := Acanc

k (ui,m−1, ui−1,m−1, ui,m),

Acr
k (iε,mε) := Acr

k (ui,m−1, ui−1,m−1, ui,m).

2.4. Known Lypapunov functionals. In this section we recall the definitions and the basic properties
of three already well known functionals, namely the total variation functional, the functional introduced
by Glimm in [10] which controls the transversal amounts of interaction and the functional introduced by
the first author in [4], which controls the cubic amounts of interaction.

Definition 2.11. Define the total variation along curves as

V (t) :=

n∑
k=1

∑
m∈Z
|si,mk |, for any t ∈ [iε, (i+ 1)ε).
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Define the transversal interaction functional as

Qtrans(t) :=

n∑
k=1

k−1∑
h=1

∑
m>m′

|si,m
′

k ||si,mh |, for any t ∈ [iε, (i+ 1)ε).

Define the cubic interaction functional as

Qcubic(t) :=

n∑
k=1

∑
m,m′∈Z

∫
I(si,mk )

∫
I(si,m

′
k )

∣∣σi,mk (τ)− σi,m
′

k (τ ′)
∣∣dτ ′dτ.

Remark 2.12. Notice that the three functionals t 7→ V (t), Qtrans(t), Qcubic(t) are local in time, i.e. their
value at time t̄ depends only on the solution uε(t̄) at time t̄ and not on the solution at any other time
t 6= t̄. On the contrary, the functionals Qk, k = 1, . . . , n we will introduce in Section 6 to bound the
difference in speed of the wavefronts before and after the interactions are non-local in time, i.e. their
definition requires the knowledge of the whole solution in R+ × R.

The following statements hold: for the proofs, see [8], [4].

Proposition 2.13. There exists a constant C > 0, depending only of the flux f , such that for any time
t ≥ 0

1

C
Tot.Var.(u(t)) ≤ V (t) ≤ CTot.Var.(u(t)).

Theorem 2.14. The following hold:

(1) the functionals t 7→ V (t), Qtrans(t), Qcubic(t) are constant on each interval [iε, (i+ 1)ε);
(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:

V (t) ≤ O(1)Tot.Var.(u(t)),

Qtrans(t) ≤ O(1)Tot.Var.(u(t))2,

Qcubic(t) ≤ O(1)Tot.Var.(u(t))3;

(3) there exist constants c1, c2, c3 > 0, depending only on the flux f , such that for any i ∈ N, defining

Qknown(t) := c1V (t) + c2Q
trans(t) + c3Q

cubic(t),

it holds∑
m∈Z

[
Atrans(iε,mε) +

n∑
k=1

(
Acanc
k (iε,mε) + Acubic

k (iε,mε)
)]
≤ Qknown((i− 1)ε)−Qknown(iε).

3. Interaction between two merging Riemann problems

This section is devoted to prove the local part of the proof of Theorem 1.1, as explained in the intro-
duction. In particular we will consider two contiguous Riemann problems (uL, uM ), (uM , uR) which are
merging, producing the Riemann problem (uL, uR) and we will introduce a global amount of interaction
A, which bounds

(1) the L∞-distance between the u-component of the elementary curves before and after the inter-
action;

(2) the L1-distance between the speed of the wavefronts before and after the interaction, i.e. the
σ-component of the elementary curves;

(3) the L1-distance between the second derivatives of the reduced fluxes, before and after the inter-
action.

This is done in Theorem 3.3.
Let us first introduce some notations, as in Section 2.2. Consider two contiguous Riemann problem

(3.1) uM = Tns′n ◦ · · · ◦ T
1
s′1
uL, uR = Tns′′n ◦ · · · ◦ T

1
s′′1
uM ,

and the Riemann problem obtained joining them,

uR = Tnsn ◦ · · · ◦ T
1
s1u

L.
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γ′1 = γ̃′1

uM1

γ′2

γ′3

γ′′1
γ′′2

γ′′3

γ̃′′1

γ̃′2

uR1 = uL2

γ̃′′2

uM2

γ̃′3

uR2 = uL3

γ̃′′3uM3

uR3

uL1 = uL

uM

uR

Figure 1. Elementary curves of two interacting Riemann problems before and after
transversal interactions.

In particular the incoming curves are

(3.2)
γ′1 = (u′1, v

′
1, σ
′
1) := γ1(uL, s′1), γ′k = (u′k, v

′
k, σ
′
k) := γk

(
u′k−1(s′k−1), s′k

)
for k = 2, . . . , n,

γ′′1 = (u′′1 , v
′′
1 , σ

′′
1 ) := γ1(uM , s′′1), γ′′k = (u′′k , v

′′
k , σ

′′
k ) := γk

(
u′′k−1(s′′k−1), s′′k

)
for k = 2, . . . , n,

while the outcoming ones are

γ1 = (u1, v1, σ1) := γ1(uL, s1), γk = (uk, vk, σk) := γk
(
uk−1(sk−1), sk

)
for k = 2, . . . , n.(3.3)

We will denote by f ′k, f
′′
k , fk the reduced fluxes associated by (2.5) to γ′k, γ

′′
k , γk respectively; for simplicity,

we will assume that γ′′k and f ′′k are defined on s′k + I(s′′k), instead of I(s′′k) and f ′′k (s′k) = f ′k(s′k): indeed,

it is clear that adding a constant to f̃k does not vary system (2.4).
Fix an index k ∈ {1, . . . n} and consider the points (Figure 1)

uL1 := uL, uLk := T k−1
s′′k−1
◦ T k−1

s′k−1
◦ · · · ◦ T 1

s′′1
◦ T 1

s′1
uL, k ≥ 2

uMk := T ks′k
uLk , uRk := T ks′′k

uMk , k = 1, . . . , n.

By definition, the Riemann problem between uLk and uMk is solved by a wavefront of the k-th family with
strength s′k and the Riemann problem between uMk and uRk is solved by a wavefront of the k-th family
with strength s′′k . Denote by γ̃′k = (ũ′k, ṽ

′
k, σ̃
′
k) the curve which solves the Riemann problem [uLk , u

M
k ] and

by f̃ ′k the associated reduced flux (see (2.5)).

Similarly, let γ̃′′k = (ũ′′k , ṽ
′′
k , σ̃

′′
k ) be the curve solving the Riemann problem [uMk , u

R
k ] and let f̃ ′′k be the

associated reduced flux. Clearly, γ̃′k, f̃ ′k are defined on I(sk), while, since we are going to perform the

patching (1.11), (1.12)), we will assume as above that γ̃′′k and f̃ ′′k are defined on s′k + I(s′′k) (instead of

I(s′′k)) and that f̃ ′′k (s′k) = f̃ ′k(s′k)..

3.1. Definition of the quadratic amount of interaction. In this section we define a new quantity,
namely the quadratic amount of interaction, which will be used to bound the L1-norm of the difference
of speed between incoming and outgoing wavefronts.

Definition 3.1. If s′ks
′′
k ≥ 0, we define the quadratic amount of interaction of the k-family associated to

the two Riemann problems (3.1) by

A
quadr
k (uL, uM , uR) :=


f̃ ′k(s′k)− conv[0,s′k+s′′k ]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k) if s′k > 0, s′′k > 0,

conc[s′k+s′′k ,0]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k)− f̃ ′k(s′k) if s′k < 0, s′′k < 0,

0 if s′ks
′′
k ≤ 0.
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Definition 3.2. We define the total amount of interaction associated to the two Riemann problems (3.1)
as

A(uL, uM , uR) := Atrans(uL, uM , uR) +

n∑
h=1

(
A

quadr
h (uL, uM , uR) +Acanc

h (uL, uM , uR) +Acubic
h (uL, uM , uR)

)
.

3.2. Distance between curves and between reduced fluxes. The main result of this section is the
following.

Theorem 3.3. For any k = 1, . . . , n,

• if s′ks
′′
k ≥ 0, then∥∥(u′k ∪ u′′k)− uk

∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(σ′k ∪ σ′′k )− σk
∥∥
L1(I(s′k+s′′k )∩I(sk))∥∥∥∥(d2f ′k

dτ2
∪ d

2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))


≤ O(1)A(uL, uM , uR);

• if s′ks
′′
k < 0, then∥∥(u′k M u

′′
k)− uk

∥∥
L∞(I(s′k+s′′k )∩I(sk))∥∥(σ′k M σ

′′
k )− σk

∥∥
L1(I(s′k+s′′k )∩I(sk))∥∥∥∥(d2f ′k

dτ2
M
d2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))


≤ O(1)A(uL, uM , uR);

The proof of the theorem is a bit technical, but it is not difficult. It is essentialy based on the fact that
we have used the L1-norm of the difference in speed into the definition of the distance D in Section 2.1.2
and on the computation in Lemma 3.9, which relates the difference in speed of the incoming wavefronts
with the quadratic amount of interaction introduced in Definition 3.1.

The proof of Theorem 3.3 is given in the following three subsections. In the first subsection we prove
some basic estimates related to translations of the starting point of the curve which solves a Riemann
problem and to changes of the length of such a curve; in the second subsection we consider the situation
in which each of the two incoming Riemann problems is solved by a wavefront of a single family k; in the
third subsection we conclude the proof of Theorem 3.3, piecing together the analysis of the previous two
cases.

3.2.1. Basic estimates. First of all, we prove the following three lemmas. The first is just an observation
on the second derivative of the reduced flux. The second and the third provide estimates on the distance
between curves and between reduced fluxes when varying the starting point of the curve or its length.

Lemma 3.4. Let γ = (u, vk, σk) := γk(u0, s) the solution of the (2.4), i.e. the curve solving the Riemann
problem with left state u0 and length s. Denote by fk the reduced flux associated to γk as in (2.5), i.e.

fk(τ) :=

∫ τ

0

λ̃k(u(ς), vk(ς), σk(ς))dς.

Then it holds

(3.4)
d2fk
dτ2

(τ) =
∂λ̃k
∂u

(
γk(τ)

)
r̃k
(
γk(τ)

)
+
∂λ̃k
∂vk

(
γk(τ)

)[
λ̃k
(
γk(τ)

)
−
d conv[0,s] fk

dτ
(τ)

]
.

Proof. Observe that

∂λ̃k
∂σk

(
γk(τ)

)dσk
dτ

(τ) = 0 for L1-a.e. τ ∈ [0, s].

Namely, if dσk(τ)
dτ 6= 0 for some τ , then vk(τ) = 0 and thus, by (2.3),∣∣∣∣∂λ̃k∂σk

(
γk(τ)

)∣∣∣∣ ≤ O(1)
∣∣vk(τ)

∣∣ = 0.

As a consequence, formula (3.4) holds L1-a.e., and being both sides continuous we can conclude. �
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Lemma 3.5 (Translation of the starting point). Let γ = γk(u0, s) = (u, vk, σk) and γ′ = γk(u′0, s) =
(u′, v′k, σ

′
k). Denote by fk, f

′
k the reduced flux associated to γ, γ′ respectively.

Then it holds

‖u− u′‖∞ ≤ O(1)|u0 − u′0|, ‖vk − v′k‖∞ ≤ O(1)|s||u0 − u′0|,

‖σk − σ′k‖1 ≤ O(1)|s||u0 − u′0|,
∥∥∥∥d2fk
dτ2

− d2f ′k
dτ2

∥∥∥∥
1

≤ O(1)|s||u0 − u′0|.

Proof. It holds

u(τ) = u0 +

∫ τ

0

r̃k(γ(ς))dς

vk(τ) = fk(γ; τ)− conv
[0,s]

fk(γ; τ)

σk(τ) =
d

dτ
conv
[0,s]

fk(γ; τ)



u′(τ) = u′0 +

∫ τ

0

r̃k(γ′(ς))dς

v′k(τ) = fk(γ′; τ)− conv
[0,s]

fk(γ′; τ)

σ′k(τ) =
d

dτ
conv
[0,s]

fk(γ′; τ)

Consider the curve γ̃(τ) = γ(τ) + (u′0 − u0, 0, 0), i.e. the translation of γ from the starting point

(u0, 0, σk(0)) to (u′0, 0, σk(0)) and set ˜̃γ := T (γ̃). The curves γ̃ and ˜̃γ satisfy the following systems

ũ(τ) = u′0 +

∫ τ

0

r̃k(γ(ς))dς

ṽk(τ) = fk(γ; τ)− conv
[0,s]

fk(γ; τ)

σ̃k(τ) =
d

dτ
conv
[0,s]

fk(γ; τ)



˜̃u(τ) = u′0 +

∫ τ

0

r̃k(γ̃(ς))dς

˜̃vk(τ) = fk(γ̃; τ)− conv
[0,s]

fk(γ̃; τ)

˜̃σk(τ) =
d

dτ
conv
[0,s]

fk(γ̃; τ)

Let us prove now the first inequality. Using the Contraction Mapping Principle, we get

‖u− u′‖∞ ≤ ‖u− ũ‖∞ + ‖ũ− u′‖∞ ≤ |u0 − u′0|+D(γ̃, γ′) ≤ |u0 − u′0|+ 2D(γ̃, T (γ̃)),

being the map T a contraction with constant 1/2.
Since γ̃ is obtained from γ by translation of the initial point of the u-component, we get

|˜̃u(τ)− ũ(τ)| ≤
∫ τ

0

∣∣r̃k(γ̃k(ς))− r̃k(γk(ς))
∣∣dς

≤
∫ τ

0

(∥∥∥∥∂r̃k∂u
∥∥∥∥
∞

∣∣ũ(ς)− u(ς)
∣∣+

∥∥∥∥∂r̃k∂vk

∥∥∥∥
∞

∣∣ṽk(ς)− vk(ς)
∣∣+

∥∥∥∥ ∂r̃k∂σk

∥∥∥∥
∞

∣∣σ̃k(ς)− σk(ς)
∣∣)dς

=

∫ τ

0

∥∥∥∥∂r̃k∂u
∥∥∥∥
∞

∣∣ũ(ς)− u(ς)
∣∣dς

≤ O(1)|u0 − u′0||s|.

Similarly, ∥∥˜̃vk − ṽk∥∥∞ ≤ O(1)|s||u0 − u′0|,
∥∥˜̃σk − σ̃k∥∥1

≤ O(1)|s||u0 − u′0|,
and thus

(3.6) D(γ̃, ˜̃γ) ≤ O(1)|s||u0 − u′0|.

Hence

‖u− u′‖∞ ≤ O(1)|u0 − u′0|.
In a similar way

‖vk − v′k‖∞ ≤ ‖vk − ṽk‖∞ + ‖ṽk − v′k‖∞ ≤ ‖ṽk − v′k‖∞ ≤ D(γ̃, γ′) ≤ 2D
(
γ̃, T (γ̃)

)
,

and

‖σk − σ′k‖1 ≤ ‖σk − σ̃k‖1 + ‖σ̃k − σ′k‖1 ≤ ‖σ̃k − σ′k‖1 ≤ D(γ̃, γ′) ≤ 2D
(
γ̃, T (γ̃)

)
.

A further application of (3.6) yields the estimates on vk, σk.
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Finally, using the chain rule, Lemma 3.4, Proposition A.6 and the first part of the proof, we get∥∥∥∥d2fk
dτ2

− d2f ′k
dτ2

∥∥∥∥
1

≤ O(1)

[ ∫ s

0

(
|u(τ)− u′(τ)|+ |vk(τ)− v′k(τ)|+ |σk(τ)− σ′k(τ)|

)
dτ

]
≤ O(1)|s||u0 − u′0|.

(3.7)

This concludes the proof. �

Lemma 3.6 (Change of the length of the curve). Let s′, s′′ ∈ R, u0 ∈ Rn and assume s′s′′ ≥ 0. Let

γ = γk(u0, s
′ + s′′) = (u, vk, σk), γ′ = (u′, v′k, σ

′
k) := γk(u0, s

′), γ′′ = (u′′, v′′k , σ
′′
k ) := γk(u(s′), s′′).

As before, denote by fk, f
′
k, f
′′
k the reduced fluxes associated by (2.5) to γ, γ′, γ′′ respectively; assume also

that γ′′, f ′′k are defined on s′ + I(s′′) instead of I(s′′).
Then it holds

(3.8) D
(
γ|I(s′), γ′

)
≤ O(1)|s′||s′′|, D

(
γ|s′+I(s′′), γ

′′) ≤ O(1)|s′||s′′|,
and

(3.9a)

∥∥∥∥d2fk
dτ2

− d2f ′k
dτ2

∥∥∥∥
L1(I(s′))

≤ O(1)D
(
γ|I(s′), γ′

)
≤ O(1)|s||s′|,

(3.9b)

∥∥∥∥d2fk
dτ2

− d2f ′′k
dτ2

∥∥∥∥
L1(s′+I(s′′))

≤ O(1)D
(
γ|s′+I(s′′), γ

′′) ≤ O(1)|s||s′|.

Proof. We prove only the first inequality in (3.8) and (3.9) and only in the case s′, s′′ ≥ 0; all the other
cases can be treated similarly.

By the Contraction Mapping Theorem, D
(
γ|I(s′), γ′

)
≤ 2D

(
γ|I(s′), γ̃

)
, where γ̃ = (ũ, ṽk, σ̃k) :=

T (γ|I(s′)): 

ũ(τ) = u0 +

∫ τ

0

r̃i(γ(ς))dς

ṽk(τ) = fk(γ; τ)− conv
[0,s′]

fk(γ; τ)

σ̃k(τ) =
d

dτ
conv
[0,s′]

fk(γ; τ)

Hence ũ(τ) = u(τ) for any τ ∈ [0, s]. It also holds∣∣ṽk(τ)− vk(τ)
∣∣ =

∣∣∣ conv
[0,s′]

fk(γ; τ)− conv
[0,s′+s′′]

fk(γ; τ)
∣∣∣

=

∣∣∣∣ ∫ τ

0

d

dτ
conv
[0,s′]

fk(γ; τ)− d

dτ
conv

[0,s′+s′′]
fk(γ; τ)dτ

∣∣∣∣
≤
∫ τ

0

∣∣∣∣ ddτ conv
[0,s′]

fk(γ; τ)− d

dτ
conv

[0,s′+s′′]
fk(γ; τ)

∣∣∣∣
≤
∥∥∥∥ ddτ conv

[0,s′]
fk(γ)− d

dτ
conv

[0,s′+s′′]
f̃k(γ)|[0,s′]

∥∥∥∥
∞
|s′|

(by Prop. A.5) ≤ O(1)|s′||s′′|.
Clearly

‖σ̃k − σk‖1 ≤
∥∥∥ d
dτ

conv
[0,s′]

fk(γ)− d

dτ
conv

[0,s′+s′′]
fk(γ)|[0,s′]

∥∥∥
1

≤
∥∥∥ d
dτ

conv
[0,s′]

fk(γ)− d

dτ
conv

[0,s′+s′′]
fk(γ)|[0,s′]

∥∥∥
∞
|s′|

(by Prop. A.5) ≤ O(1)|s′||s′′|.
Hence we obtain

D
(
γ|I(s′), γ′

)
≤ 2D

(
γ|I(s′), γ̃

)
≤ O(1)|s′||s′′|.

The first inequality in (3.9) is proved as in Lemma 3.5, inequality (3.7). The second inequality in (3.8)
and the second inequality in (3.9) can be treated similarly. �
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3.2.2. Elementary interactions. Now, using the previous estimates, we study how the curves γk and
the reduced fluxes fk vary when an elementary interaction between two Riemann problems occurs: by
elementary interaction we means that two adjacent Riemann problem contains waves belonging to one
family only. We consider the cases when the waves belong to two different families (transversal interaction)
or to the same family and have same sign (non-transversal interaction or simply interaction).

The case when the waves belong to the same family but have different sign (cancellation) will be
controlled by Lemma 3.6.

Lemma 3.7 (Transversal interaction). Let uM = T ksk(uL), uR = Thsh(uM ). Set ûM := Thsh(uL), ûR :=

T ksk(ûM ) and

γk = (uk, vk, σk) := γk(uL, sk), γh = (uh, vh, σh) := γh(uM , sh),

γ̂h = (ûh, v̂h, σ̂h) := γh(uL, sh), γ̂k = (ûk, v̂k, σ̂k) := γk(ûM , sk).

Denote by fk, f̂k, fh, f̂h the reduced fluxes associated to the curves γk, γ̂k, γh, γ̂h respectively. Then it holds

(3.10a) ‖uh − ûh‖∞ ≤ O(1)|sk|, ‖uk − ûk‖∞ ≤ O(1)|sh|,

(3.10b) ‖vh − v̂h‖∞ ≤ O(1)|sk||sh|, ‖vk − v̂k‖∞ ≤ O(1)|sk||sh|,

(3.10c) ‖σh − σ̂h‖1 ≤ O(1)|sk||sh|, ‖σk − σ̂k‖1 ≤ O(1)|sk||sh|,∥∥∥∥d2fk
dτ2

− d2f̂k
dτ2

∥∥∥∥
1

≤ O(1)|sk||sh|,
∥∥∥∥d2fh
dτ2

− d2f̂h
dτ2

∥∥∥∥
1

≤ O(1)|sk||sh|,

and

(3.11) |uR − ûR| ≤ O(1)|sk||sh|.

Proof. Inequalities (3.10) are direct consequence of Lemma 3.5 and the fact that∣∣uM − uL∣∣ ≤ O(1)|sk|,
∣∣ûM − uL∣∣ ≤ O(1)|sh|.

Let us now prove inequality (3.11). We have

uR = uL +

∫ sk

0

r̃k(γk(ς))dς +

∫ sh

0

r̃h(γh(ς))dς,

ûR = uL +

∫ sh

0

r̃h(γ̂h(ς))dς +

∫ sk

0

r̃k(γ̂k(ς))dς.

Hence

|uR − ûR| ≤
∫ sk

0

∣∣r̃k(γk(ς))− r̃k(γ̂k(ς))
∣∣dς +

∫ sh

0

∣∣r̃h(γh(ς))− r̃h(γ̂h(ς))
∣∣dς

≤ O(1)

[ ∫ sk

0

(
|uk(ς)− ûk(ς)|+ |vk(ς)− v̂k(ς)|+ |σk(ς)− σ̂k(ς)

∣∣)dς
+

∫ sh

0

(
|uh(ς)− ûh(ς)|+ |vh(ς)− v̂h(ς)|+ |σh(ς)− σ̂h(ς)

∣∣)dς]
≤ O(1)

[
|sk|‖uk − ûk‖∞ + |sk|‖vk − v̂k‖∞ + ‖σk − σ̂k‖1

|sh|‖uh − ûh‖∞ + |sh|‖vh − v̂h‖∞ + ‖σh − σ̂h‖1
]

(by (3.10a)-(3.10c)) ≤ O(1)|sk||sh|,
thus concluding the proof of the lemma. �

Let ū1 ∈ B(0, δ/2), A ∈ N and consider a family of A consecutive curves, {γa}a∈{1,...,A}: given

{1, . . . , A} 3 a 7→ (k(a), sa) ∈ {1, . . . , n} × R,
define

γa(τ) =
(
ua(τ), va(τ), σa(τ)

)
= γk(a)

(
ūa, sa

)
(τ), a ∈ 1, . . . , A,

where ūa+1 = ua(sa), for a = 1, . . . A− 1.
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Let {γ̃a = (ũa, ṽa, σ̃a)}a∈{1,...,A} be the curves obtained by switching the values of k(a), s(a) in two
consecutive points ā, ā+ 1, 1 ≤ ā < A:

k̃(a) =


k(a) a 6= ā, ā+ 1,

k(ā+ 1) a = ā,

k(ā) a = ā+ 1,

s̃(a) =


s(a) a 6 ā, ā+ 1,

s(ā+ 1) a = ā,

s(ā) a = ā+ 1.

We assume
∑
|sa| � 1 sufficiently small (depending only on f) so that the curves γa, γ̃a remain in

B(0, δ).

Denote by fa, f̃a, a = 1, . . . , A, the reduced fluxes associated to γa, γ̃a respectively.

Corollary 3.8. It holds∥∥ua − ũa∥∥∞ ≤ O(1)|sā||sā+1|,
∥∥va − ṽa∥∥∞ ≤ O(1)|sā||sā+1|,∥∥σa − σ̃a∥∥

1
≤ O(1)|sā||sā+1|,

∥∥fa − f̃a∥∥
1
≤ O(1)|sā||sā+1|.

(3.12)

Proof. For a = 1, . . . , ā − 1, the l.h.s. of each inequality in (3.12) is equal to zero. For a = ā, ā + 1, the
proof is an immediate consequence of Lemma 3.7.

Assume that (3.12) has been proved up to ǎ ∈ ā+ 1, . . . , A− 1; in particular∣∣uǎ(sǎ)− ũǎ(s̃ǎ)
∣∣ ≤ O(1)|sā||sā+1|.

Observe that at step ǎ+ 1 we have to translate the initial point ūǎ+1 = uǎ(sǎ) of the curve γǎ+1 to the
point ũǎ(s̃ǎ).

Now use Lemma 3.5 to conclude that (3.12) holds for ǎ+ 1. �

We now consider interactions among wavefronts of the same family and with same sign. Let

γ′ = (u′, v′k, σ
′
k) := γk(uL, s′), γ′′ = (u′′, v′′k , σ

′′
k ) := γk(uM , s′′),

where uM := u′(s′) and s′s′′ > 0. Let

γ = (u, vk, σk) := γ(uL, s′ + s′′).

Denote by f ′k, f
′′
k , fk the reduced flux associated to γ′, γ′′, γ respectively. Assume as before that γ′′ and

f ′′k are defined on the interval s′ + I(s′′), instead of I(s′′), and that f ′k(s′) = f ′′k (sk).

Lemma 3.9 (Interaction of wavefronts of the same family and with same sign). It holds

D(γ′ ∪ γ′′, γ) ≤ O(1)Aquadr(uL, uM , uR),

∥∥∥∥d2(f ′k ∪ f ′′k )

dτ2
− d2fk

dτ2

∥∥∥∥
1

≤ O(1)Aquadr(uL, uM , uR).

Proof. We prove the lemma only in the case s′, s′′ > 0, the case s′, s′′ < 0 being entirely similar. We have

u′(τ) = uL +

∫ τ

0

r̃k(γ′(ς))dς,

v′k(τ) = f ′k(τ)− conv
[0,s′]

f ′k(τ),

σ′k(τ) =
d

dτ
conv
[0,s′]

f ′k(τ),



u′′(τ) = uM +

∫ τ

s′
r̃k(γ′′(ς))dς,

v′′k (τ) = f ′′k (τ)− conv
[s′,s′+s′′]

f ′′k (τ),

σ′′k (τ) =
d

dτ
conv

[s′,s′+s′′]
f ′′k (τ).

Set γ̂ = (û, v̂k, σ̂k) := T (γ′ ∪ γ′′):

û(τ) = uL +

∫ min{τ,s′}

0

r̃k(γ′(ς))dς +

∫ τ

min{τ,s′}
r̃k(γ′′(ς))dς,

v̂k(τ) =
(
f ′k ∪ f ′′k

)
(τ)− conv

[0,s′+s′′]

(
f ′k ∪ f ′′k

)
(τ),

σ̂k(τ) =
d

dτ
conv

[0,s′+s′′]

(
f ′k ∪ f ′′k

)
(τ).

Let us prove the first inequality of the statement. It holds

‖(u′ ∪ u′′)− û‖∞ = 0, ‖(v′k ∪ v′′k )− v̂k‖∞ = Aquadr(uL, uM , uR).
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Moreover,

∥∥(σ′k ∪ σ′′k)− σ̂k∥∥1
=

∫ s′

0

∣∣∣∣d conv[0,s′] f
′
k

dτ
(τ)−

d conv[0,s′+s′′](f
′
k ∪ f ′′k )

dτ

∣∣∣∣dτ
+

∫ s′+s′′

s′

∣∣∣∣d conv[s′,s′+s′′] f
′′
k

dτ
−
d conv[0,s′+s′′](f

′
k ∪ f ′′k )

dτ

∣∣∣∣dτ
=

∫ s′

0

[
d conv[0,s′] f

′
k

dτ
−
d conv[0,s′+s′′](f

′
k ∪ f ′′k )

dτ

]
dτ

+

∫ s′+s′′

s′

[
d conv[0,s′+s′′](f

′
k ∪ f ′′k )

dτ
−
d conv[s′,s′+s′′] f

′′
k

dτ

]
dτ

=
(
f ′k(s′)− conv

[0,s′+s′′]

(
f ′k ∪ f ′′k

)
(s′)
)

+
(
f ′′k (s′)− conv

[0,s′+s′′]

(
f ′k ∪ f ′′k

)
(s′)
)

= 2
(
f ′k(s′)− conv

[0,s′+s′′]

(
f ′k ∪ f ′′k

)
(s′)
)

= 2 Aquadr(uL, uM , uR).

Hence

D
(
γ′ ∪ γ′′, γ̂

)
= 3Aquadr(uL, uM , uR),

and thus, by the Contraction Mapping Theorem,

D
(
γ′ ∪ γ′′, γ

)
≤ 2D

(
γ′ ∪ γ′′, γ̂

)
≤ 6Aquadr(uL, uM , uR).

The second inequality is a consequence of Lemma 3.4, Proposition A.6 and the first part of the statement.
�

3.2.3. Conclusion of the proof of Theorem 3.3. To prove Theorem 3.3, we piece together all the previous
estimates as follows. First of all we split the operation of “merging the two Riemann problems” into
three steps:

(1) first we pass from the collection of curves (3.2), i.e. the black ones in Figure 2, to the collection
of curves

γ̃′1 = (ũ′1, ṽ
′
1, σ̃
′
1) := γ1(uL, s′1), γ̃′′1 = (ũ′′1 , ṽ

′′
1 , σ̃

′′
1 ) := γ1(u′1(s′1), s′′1),

γ̃′k = (ũ′k, ṽ
′
k, σ̃
′
k) := γk

(
ũ′′k−1(s′′k−1), s′k

)
, γ̃′′k = (ũ′′k , ṽ

′′
k , σ̃

′′
k ) := γk

(
ũ′k(s′k), s′′k

)
, k = 2, . . . , n,(3.13)

i.e. the red curves in Figure 2; this first step will be called transversal interactions and it will be
studied in Lemma 3.10;

(2) as a second step, we let the curves of the same family interact, passing from the collection of red
curves (3.13) to the collection of curves (green in Figure 2)

γ̃1 = (ũ1, ṽ1, σ̃1) := γ1(uL, s′1 + s′′1),

γ̃k = (ũk, ṽk, σ̃k) := γk
(
ũk−1(s′k−1 + s′′k−1), s′k + s′′k

)
, k = 2, . . . , n;

(3.14)

this operation will be called collision among waves of the same family and it will be studied in
Lemma 3.11;

(3) finally we pass from the collection of green curves (3.14) to the outcoming collection of curves
(3.3), blue in Figure 2; this operation will be called perturbation of the total variation due to
nonlinearity, and it will be studied in Lemma 3.12 and its Corollary 3.13.

We will denote by f̃ ′k, f̃
′′
k , f̃k the reduced fluxes associated respectively to γ̃′k, γ̃

′′
k , γ̃k and, as before, we will

assume that γ̃′′k , f̃
′′
k are defined on s′k + I(s′′k), instead of I(s′′k), and f̃ ′′k (s′k) = f̃ ′k(s′k). Let us begin with

the analysis of transversal interactions.
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γ′1 = γ̃′1

γ′2

γ′3

γ′′1
γ′′2

γ′′3

γ̃′1

γ̃′2

γ̃′′2

γ̃′3

γ̃′′3

γ̃1

γ̃2

γ̃3

γ1

γ2

γ3

uL

uM

uR

Figure 2. Elementary curves of two interacting Riemann problems before the interac-
tion (black ones), after transversal interaction (red ones), after interaction/cancellation
(collision) among wavefronts of the same family (green ones), after creation/cancellation
(perturbation of the total variation) due to non-linearity (blue ones).

Lemma 3.10. For any k = 1, . . . , n, it holds

‖u′k − ũ′k‖L∞(I(s′k))

‖u′′k − ũ′′k‖L∞(s′k+I(s′′k ))

‖σ′k − σ̃′k‖L1(I(s′k))

‖σ′′k − σ̃′′k‖L1(s′k+I(s′′k ))∥∥∥∥d2f ′k
dτ2

− d2f̃ ′k
dτ2

∥∥∥∥
L1(I(s′k))∥∥∥∥d2f ′′k

dτ2
− d2f̃ ′′k

dτ2

∥∥∥∥
L1(s′k+I(s′′k ))



≤ O(1)Atrans(uL, uM , uR).

Proof. The proof is an easy consequence of Corollary 3.8 and Definition 2.5 of Atrans(uL, uM , uR), just
observing that we can pass from the collection of curves (3.2) to the collection of curves 3.13 first switching
the curve γ′′1 with all the curves γ′k, k = 2, . . . , n, then switching the curve γ′′2 with all the curves γ′k,
k = 3, . . . , n, and so on up to curve γ′′n−1. �

Let us now analyze the collision among waves of the same family.

Lemma 3.11. For any k = 1, . . . , n,

• if s′ks
′′
k ≥ 0, then

‖
(
ũ′k ∪ ũ′′k

)
− ũk‖L∞(I(s′k+s′′k ))

‖
(
σ̃′k ∪ σ̃′′k

)
− σ̃k‖L1(I(s′k+s′′k ))∥∥∥∥(d2f̃ ′k

dτ2
∪ d

2f̃ ′′k
dτ2

)
− d2f̃k

dτ2

∥∥∥∥
L1(I(s′k+s′′k ))

 ≤ O(1)

[ k∑
h=1

A
quadr
h (uL, uM , uR) + Acanc

h (uL, uM , uR)

]
.
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• if s′ks
′′
k < 0, then

‖
(
ũ′k M ũ

′′
k

)
− ũk‖L∞(I(s′k+s′′k ))

‖
(
σ̃′k M σ̃

′′
k

)
− σ̃k‖L1(I(s′k+s′′k ))∥∥∥∥(d2f̃ ′k

dτ2
M
d2f̃ ′′k
dτ2

)
− d2f̃k

dτ2

∥∥∥∥
L1(I(s′k+s′′k ))

 ≤ O(1)

[ k∑
h=1

A
quadr
h (uL, uM , uR) + Acanc

h (uL, uM , uR)

]
.

Proof. Step 1. First we prove that for each k = 1, . . . , n, it holds

(3.15)
∣∣ũ′′k(s′k + s′′k)− ũk(s′k + s′′k)

∣∣ ≤ O(1)

k∑
h=1

[
A

quadr
h (uL, uM , uR) + Acanc

h (uL, uM , uR)
]
.

Recalling that ũ′′k is defined on s′k + I(s′′k), set

γ̂k = (ûk, v̂k, σ̂k) :=

{
γk
(
ũ′k(0), s′k + s′′k

)
if s′ks

′′
k ≥ 0 or

(
s′ks
′′
k < 0 and |s′k| > |s′′k |

)
,

γk
(
ũ′′k(0), s′k + s′′k

)
if s′ks

′′
k < 0 and |s′′k | > |s′k|.

In order to prove (3.15), distinguish three cases:

• first assume that s′ks
′′
k ≥ 0; the following computation holds:∣∣ũ′′k(s′k + s′′k)− ũk(s′k + s′′k)

∣∣ ≤ ∣∣ũ′′k(s′k + s′′k)− ûk(s′k + s′′k)
∣∣+
∣∣ûk(s′k + s′′k)− ũk(s′k + s′′k)

∣∣
(by Lemma 3.9) ≤ O(1)

[
A

quadr
k (uL, uM , uR) +

∣∣ûk(s′k + s′′k)− ũk(s′k + s′′k)
∣∣]

(by Lemma 3.5) ≤ O(1)
[
A

quadr
k (uL, uM , uR) +

∣∣ûk(0)− ũk(0)
∣∣];

• now assume that s′ks
′′
k < 0 and |s′k| ≥ |s′′k |; in this case it holds, applying again Lemma 3.5 and

using the fact that ũ′′k(s′k) = ũ′k(s′k),∣∣ũ′′k(s′k + s′′k)− ũk(s′k + s′′k)
∣∣ ≤ ∣∣ũ′′k(s′k + s′′k)− ũ′′k(s′k)

∣∣+
∣∣ũ′k(s′k) + ũ′k(s′k + s′′k)

∣∣
+
∣∣ũ′k(s′k + s′′k)− ũk(s′k + s′′k)

∣∣
≤ O(1)

[
|s′′k |+

∣∣ũ′k(0)− ũk(0)
∣∣]

= O(1)
[
Acanc
k (uL, uM , uR) +

∣∣ũ′k(0)− ũk(0)
∣∣];

• finally assume that s′ks
′′
k < 0 and |s′k| < |s′′k | and perform the following computation:∣∣ũ′′k(s′k + s′′k)− ũk(s′k + s′′k)
∣∣ ≤ ∣∣ũ′′k(s′k + s′′k)− ûk(s′k + s′′k)

∣∣+
∣∣ûk(s′k + s′′k)− ũk(s′k + s′′k)

∣∣
(by Lemmas 3.6 and 3.5) ≤ O(1)

[
|s′k|+

∣∣ûk(0)− ũk(0)
∣∣]

(since ûk(0) = ũ′′k(0)) ≤ O(1)
[
|s′k|+

∣∣ũ′′k(0)− ũk(0)
∣∣]

(since ũ′k(s′k) = ũ′′k(s′k)) ≤ O(1)
[
|s′k|+

∣∣ũ′′k(0)− ũ′′k(s′k)
∣∣+
∣∣ũ′k(s′k)− ũ′k(0)

∣∣+
∣∣ũ′k(0)− ũk(0)

∣∣]
(by Lemma 3.6) ≤ O(1)

[
|s′k|+

∣∣ũ′k(0)− ũk(0)
∣∣]

≤ O(1)
[
Acanc
k (uL, uM , uR) +

∣∣ũ′k(0)− ũk(0)
∣∣];

Summarizing the three previous cases, we obtain

(3.16)
∣∣ũ′′k(s′k + s′′k)− ũk(s′k + s′′k)

∣∣ ≤ O(1)
[
A

quadr
k (uL, uM , uR) + Acanc

k (uL, uM , uR) +
∣∣ũ′k(0)− ũk(0)

∣∣].
If k = 1, ũ′1(0) = ũ1(0) = uL, and thus (3.16) yields (3.15). If k ≥ 2, one observes that

ũ′k(0)− ũk(0) = ũ′′k−1(s′k−1 + s′′k−1)− ũk−1(s′k−1 + s′′k−1)

and argues by induction to obtain (3.15).
Step 2. Using Step 1 we can now conclude the proof of the lemma. We will prove only the inequalities

related to the u-component, the proof of the other ones being completely analogous. We again study the
three cases separately:



26 STEFANO BIANCHINI AND STEFANO MODENA

• if s′ks
′′
k ≥ 0, it holds

∥∥(ũ′k ∪ ũ′′k)− ũk
∥∥
L∞(I(s′k+s′′k ))

≤
∥∥(ũ′k ∪ ũ′′k)− ûk

∥∥
L∞(I(s′k+s′′k ))

+
∥∥ûk − ũk∥∥L∞(I(s′k+s′′k ))

(by Lemmas 3.9 and 3.5) ≤ O(1)
[
A

quadr
k (uL, uM , uR) +

∣∣ũ′k(0)− ũk(0)
∣∣];

• if s′ks
′′
k < 0 and |s′k| ≥ |s′′k |, it holds

∥∥(ũ′k M ũ
′′
k)− ũk

∥∥
L∞(I(s′k+s′′k ))

≤
∥∥(ũ′k M ũ

′′
k)− ûk

∥∥
L∞(I(s′k+s′′k ))

+
∥∥ûk − ũk∥∥L∞(I(s′k+s′′k ))

(by Lemmas 3.6 and 3.5) ≤ O(1)
[
Acanc
k (uL, uM , uR) +

∣∣ũ′k(0)− ũk(0)
∣∣];

• if s′ks
′′
k < 0 and |s′k| < |s′′k |, it holds

∥∥(ũ′k M ũ
′′
k)− ũk

∥∥
L∞(I(s′k+s′′k ))

≤
∥∥(ũ′k M ũ

′′
k)− ûk

∥∥
L∞(I(s′k+s′′k ))

+
∥∥ûk − ũk∥∥L∞(I(s′k+s′′k ))

(by Lemmas 3.6 and 3.5) ≤ O(1)
[
Acanc
k (uL, uM , uR) +

∣∣ũ′′k(0)− ũk(0)
∣∣]

(since ũ′k(s′k) = ũ′′k(s′k)) ≤ O(1)
[
Acanc
k (uL, uM , uR) +

∣∣ũ′′k(0)− ũ′′k(s′k)
∣∣

+
∣∣ũ′k(s′k)− ũ′k(0)

∣∣+
∣∣ũ′k(0)− ũk(0)

∣∣]
≤ O(1)

[
Acanc
k (uL, uM , uR) +

∣∣ũ′k(0)− ũk(0)
∣∣].

Summarizing,
(3.17)∥∥(ũ′k ∪ ũ′′k)− ũk

∥∥
L∞(I(s′k+s′′k ))∥∥(ũ′k M ũ

′′
k)− ũk

∥∥
L∞(I(s′k+s′′k ))

 ≤ O(1)
[
A

quadr
k (uL, uM , uR) + Acanc

k (uL, uM , uR) +
∣∣ũ′k(0)− ũk(0)

∣∣].
If k = 1, (3.17) together with the fact that ũ′1(0) = ũ1(0) = uL yields the thesis. If k ≥ 2, one observes
that ũ′k(0) = ũ′′k−1(s′k + s′′k) and ũk(0) = ũk−1(s′k + s′′k); hence, using (3.17) and (3.15) of Step 1, one gets
the statement. �

Finally, let us analyze the perturbation of the total variation due to nonlinearity.

Lemma 3.12. For any k = 1, . . . , n it holds

‖ũk − uk‖L∞(I(s′k+s′′k )∩I(sk))

‖σ̃k − σk‖L1(I(s′k+s′′k )∩I(sk))∥∥∥∥d2f̃k
dτ2

− d2fk
dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))

 ≤ O(1)

k∑
h=1

∣∣sh − (s′h + s′′h)
∣∣.

Proof. We prove only the inequality related to the u component, the other ones being completely similar.
The proof is by induction on k. If (s′k + s′′k)sk ≤ 0, there is nothing to prove. Hence, let us assume
(s′k + s′′k)sk > 0. Set γk = (uk, vk, σk) := γk

(
ũk(0), sk

)
. It holds

∥∥ũk − uk∥∥L∞(I(s′k+s′′k )∩I(sk))
≤
∥∥ũk − uk∥∥L∞(I(s′k+s′′k )∩I(sk))

+
∥∥uk − uk∥∥L∞(I(s′k+s′′k )∩I(sk))

(by Lemmas 3.6 and 3.5) ≤ O(1)
[∣∣|sk| − |s′k + s′′k |

∣∣+
∣∣uk(0)− uk(0)

∣∣].(3.18)
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If k = 1, (3.18) yields the thesis. If k ≥ 2, observe that∣∣uk(0)− uk(0)
∣∣ =

∣∣ũk(0)− uk(0)
∣∣

=
∣∣ũk−1(s′k−1 + s′′k−1)− uk−1(sk−1)

∣∣
≤


∣∣ũk−1(s′k−1 + s′′k−1)− ũk−1(sk−1)

∣∣
+
∣∣ũk−1(sk−1)− uk−1(sk−1)

∣∣ if |s′k−1 + s′′k−1| ≥ |sk−1|,∣∣ũk−1(s′k−1 + s′′k−1)− uk−1(s′k−1 + s′′k−1)
∣∣

+
∣∣uk−1(s′k−1 + s′′k−1)− uk−1(sk−1)

∣∣ if |s′k−1 + s′′k−1| < |sk−1|,

≤ O(1)
[∣∣sk−1 − (s′k−1 + s′′k−1)

∣∣+
∥∥ũk−1 − uk−1

∥∥
L∞(I(s′k−1+s′′k−1)∩I(sk−1))

]
(by induction) ≤

k−1∑
h=1

∣∣∣sh − (s′h + s′′h)
∣∣∣.

Hence, using (3.18), we get∥∥ũk − uk∥∥L∞(I(s′k+s′′k )∩I(sk))
≤ O(1)

[∣∣sk − (s′k + s′′k)
∣∣+
∣∣uk(0)− uk(0)

∣∣] ≤ O(1)

k∑
h=1

∣∣sh − (s′h + s′′h)
∣∣.
�

Applying Theorem 2.9, we immediately obtain the following corollary.

Corollary 3.13. For any k = 1, . . . , n it holds

‖ũk − uk‖L∞(I(s′k+s′′k )∩I(sk))

‖σ̃k − σk‖L1(I(s′k+s′′k )∩I(sk))∥∥∥∥d2f̃k
dτ2

− d2fk
dτ2

∥∥∥∥
L1(I(s′k+s′′k )∩I(sk))

 ≤ O(1)

[
Atrans(uL, uM , uR) +

k∑
h=1

Acubic
h (uL, uM , uR)

]
.

It is easy to see that Theorem 3.3 follows from Lemmas 3.10, 3.11 and Corollary 3.13.

4. Lagrangian representation for the Glimm approximate solution uε

In this section we define the notion of Lagrangian representation of an approximate solution uε obtained
by the Glimm scheme to the Cauchy problem (1.3)-(1.4), and we explicitly construct a Lagrangian
representation satisfying some useful additional properties. At the end of the section we introduce some
notions related to the Lagrangian representation; in particular, the notion of effective flux feff

k (t) of the
k-th family at time t will have a major role in the next sections.

4.1. Definition of Lagrangian representation. Given a piecewise constant approximate solution uε
constructed by the Glimm scheme (see Section 2.3), for any time t ≥ 0 define the quantities

L+
k (t) :=

∑
m∈Z

[
si,mk

]+
, L−k (t) := −

∑
m∈Z

[
si,mk

]−
, if t ∈ [iε, (i+ 1)ε).

It is easy to see that |L+
k (t)|+ |L−k (t)| ≤ O(1)Tot.Var.(uε(t)). A Lagrangian representation for uε is a set

W called the set of waves, together with

• the maps

family :W → {1, . . . , n} the family of the wave w ∈ W,

S :W → {±1} the sign of the wave w ∈ W,

tcr :W → [0,+∞) the creation time of the wave w ∈ W,

tcanc :W → (0,+∞] the cancellation time of the wave w ∈ W,

• a relation, which we will denote by ≤,
• the map, called position function,

x :
{

(t, w) ∈ [0,∞)×W
∣∣ tcr(w) ≤ t < tcanc(w)

}
→ R,
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Wkw

t t

x

tcr

tcanc

S = 1

S = −1

w′

x(t, w)

x(t, w′)

mε

x

Wk(t)

iε

I(L−k (t))

θ

I(L+
k (t))

Φk(t)

Figure 3. The Lagrangian representation: at each t the sum of the length of the
red/green regions gives the set L−k , L+

k , and x follows the trajectory of each wave w.

The map Φk(t) is order reversing onW−k (t) (red) and order preserving onW+
k (t) (green).

which satisfy the conditions (1)-(4) below.
For the sake of convenience, set

Wk :=
{
w ∈ W

∣∣ family(w) = k
}
,

Wk(t) :=
{
w ∈ Wk

∣∣ tcr(w) ≤ t < tcanc(w)
}
,

W±k (t) :=
{
w ∈ Wk(t)

∣∣ S(w) = ±1
}
.

The additional conditions to be satisfied by a Lagrangian representation are the following:

(1) for any family k, time t, sign ±1, the relation ≤ is a total order both on W+
k (t) and on W−k (t); if

I ⊆ W±k (t) is an interval in the order set (W±k (t),≤), we will say that I is an interval of waves
(i.o.w.) at time t;

(2) the map x satisfies:
(a) for fixed time t, x(t, ·) :Wk(t)→ R is increasing;
(b) for fixed w ∈ W, the map x(·, w) : [tcr(w), tcanc(w))→ R is Lipschitz;
(c) for any point (t̄, x̄) ∈ [0,+∞)× R, all the waves in

Wk(t̄, x̄) := x(t̄)−1(x̄) ∩Wk

have the same sign;
(3) there exist maps Φk(t) :Wk(t)→ I

(
L−k (t)

)
∪I
(
L+
k (t)

)
such that Φk(t)|W+

k (t) :W+
k (t)→ I

(
L+
k (t)

)
is an isomorphism of ordered sets, while Φk(t)|W−k (t) : W−k (t) → I

(
L−k (t)

)
is an antisomorphism

of ordered sets;
(4) there exist maps γ̂k(t) :Wk(t)→ Dk ⊆ Rm × R× R, γ̂k(t) =

(
ûk(t), v̂k(t), σ̂k(t)

)
, such that

(a) for any x̄ ∈ R, setting

uL := lim
x→x̄−

uε(t, x), uR := lim
x→x̄+

uε(t, x),

the collection of curves{
Wk(t, x̄) 3 w 7→ γ̂k(t, w)

}
k=1,...,n

,

solves the Riemann problem (uL, uR);
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(b) for any w ∈ W±k (iε), if tcanc(w) ≥ (i+ 1)ε, then for any time t ∈ [iε, (i+ 1)ε) it holds

(4.1) x(t, w) =

{
x(iε, w) if ϑi+1 ≤ σ̂k(iε, w),

x(iε, w) + (t− iε) if ϑi+1 > σ̂k(iε, w).

4.2. Explicit construction of a Lagrangian representation. In this section we prove the following
theorem.

Theorem 4.1. There exists at least one Lagrangian representation for the approximate solution uε
constructed by the Glimm scheme, which moreover satisfies the following conditions: for any grid point
(iε,mε) ∈ Nε× Zε,

(a) the set Wk(iε,mε) ∩Wk((i− 1)ε) is an i.o.w. both at time (i− 1)ε and at time iε, while the set
Wk(iε,mε) \Wk((i− 1)ε) is an i.o.w. at time iε;

(b) the map

Φk((i− 1)ε)(Wk(iε,mε) ∩Wk((i− 1)ε))
Φk(iε)◦Φk((i−1)ε)−1

−→ Φk(iε)(Wk(iε,mε) ∩Wk((i− 1)ε))

is an affine map with Lipschitz constant equal to 1.

Roughly speaking, the first condition means that we can insert/remove waves due to nonlinear inter-
action in an ordered way, the second condition focuses on the map at the level of I(L−k (t)) ∪ I(L+

k (t)).

Proof. The proof is divided in three steps:

(1) first we define, for any family k and any grid point (iε,mε), i ∈ N, m ∈ Z, the setWk(iε,mε) of k-

th waves which at time iε are located at pointmε, together with the maps Φi,mk = Φk(iε)|Wk(iε,mε);
(2) then using the definitions given in Step (1), we construct all the other objects needed to have a

Lagrangian representation, i.e. the set of waves W, the sign S(w) of any wave w, the creation
and cancellations time tcr(w), tcanc(w), the relation ≤ and the position function x;

(3) finally we show that the additional properties (a) and (b) hold.

Step 1. The definitions of Wk(iε,mε) and Φk(iε) are given by induction on times iε, i ∈ N, assuming
that at each time the map

(4.2) Φi,mk :Wk(iε,mε)→

 ∑
m′<m

sign(si,m
′

k )=sign(si,mk )

si,m
′

k

+ I(si,mk ),

is a bijection;
At time iε = 0, for any m ∈ Z, define

Wk(0,mε) := I(s0,m
k )× {0} × {mε} × {k}

and the bijection

Φ0,m
k (w) :=

 ∑
m′<m

sign(s0,m
′

k )=sign(s0,mk )

s0,m′

k

+ τ, for w = (τ, 0,mε, k).

For any m ∈ Z, let us now define Wk(iε,mε) and Φi,mk at time iε, i ≥ 1, assuming to have already
defined, for any m ∈ Z, the set Wk((i− 1)ε,mε) ⊆ R× Nε× Zε× {1, . . . , n} and the bijections

Φi−1,m
k (t) :Wk((i− 1)ε,mε)→ I(L−k (t)) ∪ I(L+

k (t))

at time t = (i− 1)ε of the form (4.2).
If {

γi−1,m
k

}
k=1,...,n

, γi−1,m
k = (ui−1,m

k , vi−1,m
k , σi−1,m

k )
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is the collection of curves which solves the Riemann problem (ui−1,m−1, ui−1,m), then, assuming that

each γi−1,m
k is defined on the set ∑

m′<m

sign(si−1,m′
k )=sign(si−1,m

k )

si−1,m′

k

+ I(si−1,m
k )

instead of I(si−1,m
k ), set

γ̂i−1,m
k = (ûi−1,m

k , v̂i−1,m
k , σ̂i−1,m

k ) := γi−1,m
k ◦ Φi−1,m

k .

Set also

W(0)
k ((i− 1)ε,mε) :=

{
w ∈ Wk((i− 1)ε,mε)

∣∣ σ̂i−1,m
k (w) ≤ ϑi

}
,

W(1)
k ((i− 1)ε,mε) :=

{
w ∈ Wk((i− 1)ε,mε)

∣∣ σ̂i−1,m
k (w) > ϑi

}
.

Now fix m ∈ Z and define the set of waves located in (iε,mε) as follows. First notice that, since Φi−1,m
k

is a bijection and the collection of curves {γi−1,m
k }k=1,...,n solves the Riemann problem (ui−1,m−1, ui−1,m),

then there exist a, b, s′, s′′ ∈ R such that

Φi−1,m−1
k − a :W(1)

k ((i− 1)ε, (m− 1)ε)→ I(s′),

Φi−1,m
k − b :W(0)

k ((i− 1)ε,mε)→ s′ + I(s′′)
(4.3)

are bijections. Set s := si,mk and define

Σ
(1)
k (iε,mε) :=

[
Φi−1,m−1
k − a

]−1(
I(s′) ∩ I(s′ + s′′) ∩ I(s)

)
,

Σ
(0)
k (iε,mε) :=

[
Φi−1,m
k − b

]−1((
s′ + I(s′′)

)
∩ I(s′ + s′′) ∩ I(s)

)
,

Ck(iε,mε) :=
{

(τ, iε,mε, k)
∣∣ τ ∈ I(s) \ I(s′ + s′′)

}
.

(4.4)

Finally set

Wk(iε,mε) := Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε) ∪ Ck(iε,mε).

We will refer to Ck(iε,mε) as the set of waves created at point (iε,mε).

We have now to define the map Φi,mk . First let us introduce the auxiliary map Ψ : Σ
(1)
k (iε,mε) ∪

Σ
(0)
k (iε,mε)→ I(s) ∩ I(s′ + s′′) setting

(4.5) Ψ(w) :=

{
Φi−1,m−1
k (w)− a if w ∈ Σ(1)(iε,mε),

Φi−1,m
k (w)− b if w ∈ Σ(0)(iε,mε).

Since (
I(s′) ∩ I(s′ + s′′) ∩ I(s)

)
∩
((
s′ + I(s′′)

)
∩ I(s′ + s′′) ∩ I(s)

)
= ∅,

it follows that Ψ is a bijection. Define now the function Φi,mk on Wk(iε,mε) as follows:

(4.6a) Φi,mk :Wk(iε,mε)→

 ∑
m′<m

sign(si,m
′

k )=sign(si,mk )

si,m
′

k

+ I(si,mk ),

(4.6b) Φi,mk (w) :=

 ∑
m′<m

sign(si,m
′

k )=sign(si,mk )

si,m
′

k

+

{
Ψ(w) if w ∈ Σ(1)(iε,mε) ∪ Σ(0)(iε,mε),

τ if w ∈ C(iε,mε) and w = (τ, iε,mε, k).
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Φi,m
k

I(L+
k )

(u, vk, σk)

γ̂k((i− 1)ε)

γ̂k(iε)

θ

Φi−1,m−1
k

Φi−1,m
k

(iε,mε)

((i− 1)ε, (m− 1)ε)

((i− 1)ε,mε)

Figure 4. The use of the auxillary map Φk(t) to induce the correct ordering on Wk(t):
the colliding k-th waves (green) at ((i− 1)ε, (m− 1)ε), ((i− 1)ε,mε) are mapped to the
k-th waves at (iε,mε) preserving the ordering on I(L+

k ((i − 1)ε)), and the new waves
(blue) are added to the right.

It is immediate to see that Φi,mk is a bijection. We conclude this first step observing that

(4.7) Wk(iε,mε) ∩Wk(iε,m′ε) = ∅ if m 6= m′.

Step 2. We now define all the other objects which appears in the definition of Langrangian representation.
For any k ∈ {1, . . . , n}, i ∈ N, set

Wk(iε) :=
⋃
m∈Z
Wk(iε,mε), Wk :=

⋃
i∈N
Wk(iε), W :=

n⋃
k=1

Wk.

It holds
Wk(iε),Wk,W ⊆ R× Nε× Zε× {1, . . . , n}.

Since Wk ∩Wh = ∅ if k 6= h, we can define the family of a wave w ∈ Wk as family(w) = k. Now for any
k-th wave w ∈ Wk, define its creation and cancellation time as

tcr(w) := min
{
i ∈ N

∣∣ w ∈ Wk(iε)
}
, tcanc(w) := sup

{
i ∈ N

∣∣ w ∈ Wk(iε)
}

+ ε;

it is not difficult to see that w ∈ Wk(iε) for any iε ∈ [tcr(w), tcanc(w)). The sign S(w) of a wave w ∈ W
is defined as

(4.8) S(w) := sign(si,mk ) if w ∈ Wk(iε,mε).

To show that the definition (4.8) is well posed, it is sufficient to prove the following lemma.

Lemma 4.2. For any w ∈ Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε), it holds

S
(
w
)

= sign(si,mk ).
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Proof. Assume w ∈ Σ
(1)
k (iε,mε), the case w ∈ Σ

(0)
k (iε,mε) being completely similar. Define a, b, s′, s′′ as

in (4.3). It holds S(w) = sign(s′) and

(4.9) Φi−1,m−1
k (w)− a ∈ I(s′) ∩ I(s′ + s′′) ∩ I(s),

where s = si,mk . From (4.9), since I(s′) ∩ I(s′ + s′′) ∩ I(s) 6= ∅, it follows that ss′ > 0. �

Set

W+
k (iε) :=

{
w ∈ Wk(iε)

∣∣ S(w) = +1
}
, W−k (iε) :=

{
w ∈ Wk(iε)

∣∣ S(w) = −1
}
.

Define now the position function x for times iε, i ∈ N, as follows: for any w ∈ W, for any time
iε ∈ [tcr(w), tcanc(w)), set

x(iε, w) := mε, if w ∈ Wk(iε,mε).

The definition is well posed thanks to (4.7).
Using (4.7) we can define the map

Φk(iε) :Wk(iε)→ I
(
L−k (iε)

)
∪ I
(
L+
k (iε)

)
through the formula

Φk(iε)|Wk(iε,mε) := Φi,mk ,

and the map

γ̂k(iε) :Wk(iε)→ Dk
through the formula

γ̂k(iε)|Wk(iε,mε) := γ̂i,mk .

From ∑
m′<m

sign(si,m
′

k )=sign(si,mk )

si,m
′

k

+ I(si,mk ) ∩

 ∑
m′<r

sign(si,m
′

k )=sign(si,rk )

si,m
′

k

+ I(si,rk ) = ∅, for m 6= r ,

we have that Φk(iε) is a bijection.
Next define the relation ≤ on W as any relation such that the maps

Φk(iε)|W+
k (iε) :W+

k (iε)→ I
(
L+
k (iε)

)
, Φk(iε)|W−k (iε) :W−k (iε)→ I

(
L−k (iε)

)
,

become respectively an isomorphism and an antisomorphism of ordered sets.
To prove that this definition is well posed, it is sufficient to show that the following lemma holds.

Lemma 4.3. Let w′, w′′ ∈ Wk((i− 1)ε) ∩Wk(iε) and assume that they have the same sign. Then

Φk((i− 1)ε)(w′) ≤ Φk((i− 1)ε)(w′′) ⇐⇒ Φk(iε)(w′) ≤ Φk(iε)(w′′).

Proof. It is sufficient to prove the implication ”=⇒”. Suppose that both w′ and w′′ are positive, the
other case being similar, and that w′ 6= w′′; assume w′ ∈ Wk(iε,m′ε), w′′ ∈ Wk(iε,m′′ε). Distinguish
three cases:

(i) m′ < m′′: in this case, by the definition of the codomains of the maps {Φi,rk }r∈Z in (4.6a), it is
immediate to see that the Φk(iε)(w′) ≤ Φk(iε)(w′′);

(ii) m′ = m′′; using the notations as in (4.3)-(4.6b), it is sufficient to prove that Ψ(w′) ≤ Ψ(w′′). If

both w′ and w′′ belong to Σ
(0)
k (iε,m′ε) (or if they both belong to Σ

(1)
k (iε,m′ε)), the conclusion

follows from

Ψ(w′) = Φk((i− 1)ε)(w′)− a ≤ Φk((i− 1)ε)(w′′)− a = Ψ(w′);

if w′ ∈ Σ(0)(iε,m′ε), w′′ ∈ Σ(1)(iε,m′ε), then s′ and s′′ must be greater than zero; by definition,
Ψ(w′) = Φk((i − 1)ε, w′) − a ∈ I(s′) and Ψ(w′′) = Φk((i − 1)ε, w′′) − b ∈ s′ + I(s′′), and thus,
since s′, s′′ > 0, we have Ψ(w′) ≤ Ψ(w′′);
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(iii) m′ > m′′; since by hypothesis Φk((i− 1)ε)(w′) ≤ Φk((i− 1)ε)(w′′), the only possibility is that

w′ ∈ W(1)
k ((i− 1)ε,m′′ε), w′′ ∈ W(0)

k ((i− 1)ε,m′′ε), m′ = m′′ + 1;

hence

σi−1,m′′

k (Φi−1,m′′

k (w′′)) = σ̂i−1,m′′

k (w′′) ≤ ϑi < σ̂i−1,m′′

k (w′) = σi−1,m′′

k (Φi−1,m′′

k (w′));

since σi−1,m′′

k is non decreasing, we get Φi−1,m′′

k (w′′) < Φi−1,m′′

k (w′), a contradiction. �

Finally extend all the definitions above for times t ∈ (iε, (i + 1)ε), defining x(t, w) according to (4.1)
and setting

Φk(t) := Φk(iε), γ̂k(t) := γ̂k(iε), if t ∈ [iε, (i+ 1)ε).

It is not difficult to see that Properties (1)-(4) of the Definition of Lagrangian representation hold.

Step 3. We are left to show that the additional properties (a) and (b) hold.

(a) From (4.4), it follows

Wk(iε,mε) ∩Wk((i− 1)ε) = Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε).

To prove that this set is an interval of waves at time iε, just observe that for any w ∈ Σ
(1)
k (iε,mε) ∪

Σ
(0)
k (iε,mε) and for any w′ ∈ Ck(iε,mε), it holds Φk(iε)(w) = Φi,mk (w) ≤ Φi,mk (w′) = Φk(iε)(w′) and

thus w ≤ w′.
Let us now prove that Wk(iε,mε) ∩ Wk((i − 1)ε) is an interval of waves also at time (i − 1)ε. First

notice that both Σ
(1)
k (iε,mε) and Σ

(0)
k (iε,mε) are intervals of waves at time (i − 1)ε, since by (4.4)

they are pre-images of intervals through an (anti)isomorphism of ordered sets. Hence, to prove that

Σ
(1)
k (iε,mε)∪Σ

(0)
k (iε,mε) is an interval of waves at time (i−1)ε, take w ∈ Σ

(1)
k (iε,mε), w′ ∈ Σ

(0)
k (iε,mε),

and z ∈ Wk((i− 1)ε) with w ≤ z ≤ w′: it is sufficient to show that z ∈ Σ
(1)
k (iε,mε)∪Σ

(0)
k (iε,mε). Since

Σ
(1)
k (iε,mε),Σ

(0)
k (iε,mε) 6= ∅, we have that (using the same notations as in (4.3)-(4.4)), s′, s′′, s have the

same sign (say positive) and a = b. Hence

a ≤ Φk((i− 1)ε)(w) ≤ Φk((i− 1)ε)(z) ≤ Φk((i− 1)ε)(w′) ≤ a+ min{s′ + s′′, s};

therefore Φk((i − 1)ε)(z) − a ∈
(
I(s′) ∩ I(s′ + s′′) ∩ I(s)

)
∪
((
s′ + I(s′′)

)
∩ I(s′ + s′′)

)
and thus z ∈

Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε), thus showing that Wk(iε,mε) ∩Wk((i − 1)ε) is an interval of waves at time

(i− 1)ε.
Finally, since Φk(iε) is an (anti)isomorphism of ordered set, using (4.4) and (4.6b), we immediately get
that Ck(iε,mε) is an interval of waves at time iε, thus concluding the proof of Property (a).

(b) Assume both Σ
(1)
k (iε,mε) and Σ

(0)
k (iε,mε) are not empty and contains positive waves; if they contain

negative waves or if one of them is empty, the proof is similar. Using again the same notations as in
(4.3)-(4.6b), since they both are not empty, then a = b in (4.5). Hence Ψ coincides with Φk((i−1)ε) up to
a constant. Moreover, by (4.6a), Φk(iε) coincides with Ψ up to a constant. Hence Φk(iε)◦Φk((i−1)ε)−1

is an affine map, with slope equal to 1. �

As an immediate corollary of Properties (a)-(b) we get

Corollary 4.4. The following hold.

(1) Let i ∈ N, m ∈ Z, I ⊆ W(1)
k ((i− 1)ε, (m− 1)ε)∪W(0)

k ((i− 1)ε,mε) be an i.o.w. at time (i− 1)ε.
Then either I ∩Wk(iε) is empty or it is an i.o.w. both at time (i− 1)ε and at time iε.

(2) Let I ⊆ Wk(iε,mε) be an i.o.w. at time iε. Then either I ∩ Wk((i − 1)ε) is empty or it is an
i.o.w. both at time (i− 1)ε and at time iε.

(3) For any I ⊆ Wk(iε,mε) ∩Wk((i− 1)ε), it holds L1
(
Φk((i− 1)ε)(I)

)
= L1

(
Φk(iε)(I)

)
.
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4.3. Further definitions and remarks. We conclude this section by introducing some useful notions
that we will frequently use hereinafter, in particular, as we already said, the notion of effective flux feff

k (t)
of the k-th family at time t.

Definition 4.5. Fix t̄ ≥ 0. Let I ⊆ Wk(t̄) be an interval of waves at time t̄. Set I := Φk(t̄)(I). By
Property (3) of the Definition of Lagrangian representation, I is an interval in R (possibly made by a
single point). Let us define:

• the strength of I as
|I| := L1(I);

• the Rankine-Hugoniot speed given to the interval of waves I by a function g : R→ R as

σrh(g, I) :=

{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,

g′(I) if I is a singleton;

• for any w ∈ I, the entropic speed given to the wave w by the Riemann problem I and the flux
function g as

σent(g, I, w) :=


d

dτ
conv
I

g
(

Φk(t̄)(w)
)

if Sk(w) = +1,

d

dτ
conc
I

g
(

Φk(t̄)(w)
)

if Sk(w) = −1.

If σrh(g, I) = σent(g, I, w) for any w ∈ I, we will say that I is entropic w.r.t. the function g.
We will also say that the Riemann problem I with flux function g divides w,w′ if σent(g, I, w) 6=

σent(g, I, w′).

We recall that by definition an interval of waves is made of waves with the same sign.

Remark 4.6. Notice that σent is always increasing on I, whatever the sign of I is, by the monotonicity
properties of the derivatives of the convex/concave envelopes.

Remark 4.7. Given a function g and an interval of waves I, we can always partition I through the
equivalence relation

z ∼ z′ ⇐⇒ z, z′ are not divided by the Riemann problem I with flux function g.

As a consequence of Remark 4.6, we have that each element of this partition is an entropic interval of
waves and the relation induced by the order ≤ on the partition (see Section 1.3) is still a total order.

Let us conclude this section, introducing the following notion.

Definition 4.8. For each family k = 1, . . . n and for each time t ≥ 0 define the effective flux of the k-th
family at time t as any function

feff
k (t, ·) : [L−k , L

+
k ]→ R

whose second derivative satisfies the following relation:

∂2feff
k (t, ·)
∂τ2

(τ) :=
dλ̃(γ̂(t, w))

dτ
,

for L1-a.e. τ ∈ [L−k , L
+
k ], where w = Φk(t)−1(τ).

Remark 4.9. Let us observe the following:

(1) feff
k (t, ·) is defined up to affine function;

(2) since the second derivative of feff
k (t, ·) is an L∞-function, it turns out that feff

k (t, ·) is a C1,1-
function;

(3) feff
k (t, ·) = feff

k (iε, ·) for any t ∈ [iε, (i+ 1)ε);
(4) it is quite easy to see that for any time iε, i ∈ N and for any m ∈ Z, on the interval ∑

m′<m

sign(si,m
′

k )=sign(si,mk )

si,m
′

k

+ I(si,mk )
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the k-th effective flux function feff
k (iε, ·) coincides, up to an affine function, with the k-th reduced

flux associated to the Riemann problem located at (iε,mε) as defined in (2.5).

5. Analysis of waves collision

Starting with this section we enter in the heart of our construction. We introduce in fact the notion of
pair of waves (w,w′) which have already interacted and pair of waves (w,w′) which have never interacted
at time t̄. For any pair of waves (w,w′) and for a fixed time t̄, we define an interval of waves I(t̄, w, w′)
and a partition P(t̄, w, w′) of this interval: these objects in some sense summarize the past “common”
history of the two waves, from the moment in which they have split (if they have already interacted) or
from the last time in which one of them is created, if they have never interacted.

The interval I(t̄, w, w′) and its partition P(t̄, w, w′) will be crucial in order to define the functional Qk
in Section 6 and to prove that it satisfies the inequality (1.8).

5.1. Wave packages. We start by defining an equivalence relation between waves, which will be useful
to pass from the uncountable sets of waves W(t) at time t to the finite quotient set, whose elements will
be called wave packages.

For any t̄ ≥ 0 and w ∈ Wk(t̄), t̄ ∈ [iε, (i+ 1)ε), define the wave package to which w belongs as the set

(5.1) E(t̄, w) :=

{
w′ ∈ Wk(t̄)

∣∣∣ tcr(w) = tcr(w′), x(t, w) = x(t, w′) for all t ∈
[
tcr(w), (i+ 1)ε

)}
.

In Section 6.5 we will denote this equivalence relation as ./.

Remark 5.1. Notice that is it natural to require that the condition in (5.1) holds on the time interval
[tcr(w), (i+1)ε) instead of [tcr(w), iε] since it could happen that x(iε, w) = x(iε, w′), but x(t, w) 6= x(t, w′)
for t > iε, while we want to give definitions which are ”left-continuous in time”.

Lemma 5.2. The collection
{
E(t̄, w)

∣∣ w ∈ W(t̄)
}

is a finite partition of W(t̄) and the order induced

by the ≤ is a total order both on the set
{
E(t̄, w)

∣∣ w ∈ W+
k (t̄)

}
and on the set

{
E(t̄, w)

∣∣ w ∈ W−k (t̄)
}

,
k = 1, . . . , n.

Proof. Clearly
{
E(t̄, w)

∣∣ w ∈ W(t̄)
}

is a partition of W(t̄). To see that it is finite, just observe that
the curve x(t, ·) is uniquely determined by assigning the points mε = x(iε, ·), and for all fixed time t̄ the
set of nodal points supporting Dxuε(t), t ≤ t̄, is finite. Finally, the monotonicity of x(t̄, ·) implies the
statement about the order. �

5.2. Characteristic interval. We now define the notion of pairs of waves which have never interacted
before a fixed time t̄ and pairs of waves which have already interacted at a fixed time t̄ and to any pair of
waves (w,w′) we will associate an interval of waves I(t̄, w, w′).

Definition 5.3. Let t̄ be a fixed time and let w,w′ ∈ Wk(t̄). We say that

• w,w′ interact at time t̄ if x(t̄, w) = x(t̄, w′);
• w,w′ have already interacted at time t̄ if there is t ≤ t̄ such that w,w′ interact at time t;
• w,w′ have never interacted at time t̄ if for any t ≤ t̄, they do not interact at time t.
• w,w′ will interact after time t̄ if there is t > t̄ such that w,w′ interact at time t.
• w,w′ are joined in the real solution at time t̄ if there is a right neighborhood of t̄, say [t̄, t̄ + ζ),

such that they interact at any time t ∈ [t̄, t̄+ ζ);
• w,w′ are divided in the real solution at time t̄ if they are not joined at time t̄.

Lemma 5.4. Assume that the waves w,w′ have already interacted at time t̄. Then they have the same
sign.

The proof is an easy consequence of Property (2c) of the definition of Lagrangian representation, page
28.

Remark 5.5. It t̄ 6= iε for each i ∈ N, then two waves are divided in the real solution if and only if they
have different position. If t̄ = iε, they are divided if there exists a time t > t̄, arbitrarily close to t̄, such
that w,w′ have different positions at time t.
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Definition 5.6. Fix a time t̄ and two k-waves w,w′ ∈ Wk(t̄), w < w′. Assume that w,w′ are divided in
the real solution at time t̄. Define the time of last splitting tsplit(t̄, w, w′) (if w,w′ have already interacted
at time t̄) and the time of next interaction tint(t̄, w, w′) (if w,w′ will interact after time t̄) by the formulas

tsplit(t̄, w, w′) := max
{
t ≤ t̄ | x(t, w) = x(t, w′)

}
,

tint(t̄, w, w′) := min
{
t > t̄ | x(t, w) = x(t, w′)

}
.

(In the case one of sets is empty we assume the corresponding time to be ±∞.) Moreover set

xsplit(t̄, w, w′) := x(tsplit(t̄, w, w′), w) = x(tsplit(t̄, w, w′), w′)

and
xint(t̄, w, w′) := x(tint(t̄, w, w′), w) = x(tint(t̄, w, w′), w′),

whenever defined.

Observe that tsplit(t̄, w, w′), tint(t̄, w, w′) ∈ Nε and xsplit(t̄, w, w′), xint(t̄, w, w′) ∈ Zε.

Definition 5.7. Let w,w′ ∈ W(t̄) be divided in the real solution at time t̄ and assume they have the
same sign. Define the characteristic interval of w,w′ at time iε, denoted by I(t̄, w, w′), as follows.
First we define I(t̄, w, w′) for times t̄ = iε, i ∈ N.

(1) If w,w′ have never interacted at time iε, set
(5.3)

I(iε, w,w′) =


{
z ∈ Wk(iε)

∣∣ S(z) = S(w) and z < E(iε, w′)
}
∪ E(iε, w′) if tcr(w) ≤ tcr(w′),

E(iε, w) ∪
{
z ∈ Wk(iε)

∣∣ S(z) = S(w) and z > E(iε, w)
}

if tcr(w) > tcr(w′);

(2) If w,w′ have already interacted at time iε, argue by recursion:
(a) if iε = tsplit(iε, w,w′), set

I(iε, w,w′) :=W(iε, x(iε, w)) =W(iε, x(iε, w′));

(b) if iε > tsplit(iε, w,w′), define I(iε, w,w′) as the smallest interval in (W±k (iε),≤) which
contains I((i− 1)ε, w,w′) ∩Wk(iε), i.e.

I(iε, w,w′) :=
{
z ∈ Wk(iε)

∣∣∣ S(z) = S(w) = S(w′)

and ∃ y, y′ ∈ I((i− 1)ε, w,w′) ∩Wk(iε) such that y ≤ z ≤ y′
}
.

Finally set
I(t̄, w, w′) := I(iε, w,w′) for t̄ ∈ [iε, (i+ 1)ε).

Lemma 5.8. Let w,w′ ∈ Wk(iε) be divided in the real solution at time iε and assume that they have the
same sign. Then the following hold:

(1) I(iε, w,w′) is an interval of waves at time t̄;
(2) I(iε, w,w′) =

⋃
z∈I(iε,w,w′) E(iε, z).

Moreover, if w,w′ have already interacted at time iε,

(3) if iε > tsplit(iε, w,w′), then

I(iε, w,w′) ∩Wk((i− 1)ε) = I((i− 1)ε, w,w′) ∩Wk(iε);

(4) if z ∈ I(iε, w,w′), then

z ∈ I(t, w,w′) for any t ∈
[

max
{
tsplit(iε, w,w′), tcr(z)

}
, iε
]
;

(5) if z, z′ ∈ Wk(iε), tcr(z) = tcr(z′) = iε and x(iε, z) = x(iε, z′), then z ∈ I(iε, w,w′) if and only if
z′ ∈ I(iε, w,w′).

Proof. Point (1). Immediate from the definition of I(iε, w,w′).

Point (3). The inclusion ”⊇” is straightforward. To prove the inclusion ”⊆”, take z ∈ I(iε, w,w′) ∩
Wk((i−1)ε). By definition of I(iε, w,w′), there are y, y′ ∈ I((i−1)ε, w,w′)∩Wk(iε) such that y ≤ z ≤ y′.
Since z ∈ Wk((i − 1)ε) and, by Point (1), I((i − 1)ε, w,w′) is an interval of waves at time (i − 1)ε, it
must be z ∈ I((i− 1)ε, w,w′).
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Point (4). Easy consequence of Point (3).

Point (5). Set mε := x(iε, z) = x(iε, z′). By symmetry, it is sufficient to prove one implication. Let z ∈
I(iε, w,w′). Since z, z′ are created at time iε, we have z, z′ ∈ Ck(iε,mε) (the case where tsplit(t, w.w′) =
iε is straightforward). From z ∈ I(iε, w,w′), we deduce that there exist y, y′ ∈ I((i−1)ε, w,w′)∩Wk(iε)
such that y ≤ z ≤ y′. We want to prove that y ≤ z′ ≤ y′. Assume by contradiction that y′ < z. This
implies z ≤ y′ < z. Since z, z′ ∈ Ck(iε,mε), y′ ∈ Wk(iε) and, by Point (a) of Theorem 4.1, Ck(iε,mε)
is an interval of waves at time iε, we get y′ ∈ Ck(iε,mε), a contradiction, since y′ ∈ Wk((i − 1)ε). In a
similar way one proves that y ≤ z′ and thus we get z′ ∈ I(iε, w,w′).

Point (2). If w,w′ have never interacted, the proof is an immediate consequence of the definition (5.3)
and Lemma 5.2. Assume thus w,w′ have already interacted at time iε and argue by induction on i.
The only non-trivial inclusion is ”⊇”. Let z ∈ I(iε, w,w′), z′ ∈ E(iε, z); we would like to prove that
z′ ∈ I(iε, w,w′).

(1) If iε = tsplit(iε, w,w′), then, x(iε, w) = x(iε, w′) = x(iε, z) = x(iε, z′) and thus z′ ∈ I(iε, w,w′)
by definition (Point (2a) of Definition 5.7).

(2) If iε > tsplit(iε, w,w′), assume that the statement is proved at time (i− 1)ε, i.e.

(5.4) I((i− 1)ε, w,w′) =
⋃

y∈I((i−1)ε,w,w′)

E((i− 1)ε, y).

Distinguish two cases:
(a) if tcr(z) = tcr(z′) = iε, then x(iε, z) = x(iε, z′) and thus, by Point (5), z′ ∈ I(iε, w,w′);
(b) if tcr(z) = tcr(z′) < iε, since z ∈ I(iε, w,w′) ∩ Wk((i − 1)ε), then, by Point (3), z ∈
I((i−1)ε, w,w′) and thus by (5.4), E((i−1), z) ⊆ I((i−1)ε, w,w′). Since z′ ∈ E((i−1)ε, z),
we get

z′ ∈ I((i− 1)ε, w,w′) ∩Wk(iε) = I(iε, w,w′) ∩Wk((i− 1)ε),

again by Point (3).

�

5.3. Partition of the characteristic interval. We now define a partition P(t̄, w, w′) of the interval
of waves I(t̄, w, w′) for any time t̄ such that w,w′ are divided in the real solution at time t̄, with the
properties that each element of P(t̄, w, w′) is an interval of waves at time iε, entropic w.r.t. the flux
feff
k (t̄) of Definition 4.8.

We first give the definition by recursion on times iε, i ∈ N.

(1) If w,w′ have never interacted at time iε, the equivalence classes of the partition P(iε, w,w′) are
singletons.

(2) Assume now that w,w′ have already interacted and are divided in the real solution at time iε:
(a) if iε = tsplit(iε, w,w′), then P(iε, w,w′) is given by the equivalence relation

z ∼ z′ ⇐⇒
{
z, z′ are not divided by the Riemann problem Wk(iε, x(iε, w))

with flux function feff
k (iε, ·);

(b) if iε > tsplit(iε, w,w′), (i.e. w,w′ are divided in the real solution also at time (i− 1)ε), then
P(iε, w,w′) is given by the equivalence relation

z ∼ z′ ⇐⇒



[
z, z′ belong to the same equivalence class J ∈ P((i− 1)ε, w,w′) and

the Riemann problem J ∩W(iε) with flux feff
k (iε, ·) does not divide them

]
or[
tcr(z) = tcr(z′) = iε and z = z′

]
.

Observe that the previous definition is well posed, provided that J ∩ W(iε) is an interval of waves at
time iε. This will be an easy consequence of Proposition 5.12 and Corollary 4.4, Point (1).

Finally extend the definition of P(t̄, w, w′) also for times t̄ ∈ (iε, (i+ 1)ε), setting

P(t̄, w, w′) = P(iε, w,w′) for any t̄ ∈ [iε, (i+ 1)ε).
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Remark 5.9. As a consequence of Remark 4.7 we immediately see that each element of the partition
P(t̄, w, w′) is an entropic interval of waves (w.r.t. the flux function feff

k (t̄, ·)) and the relation induced on
P(t̄, w, w′) by the order ≤ is still a total order on P(t̄, w, w′).

Let us prove now some properties of the partition P(t̄, w, w′).

Lemma 5.10. Let t̄ be a fixed time and let w,w′, z, z′ ∈ Wk(t̄), z ∈ E(t̄, w), z′ ∈ E(t̄, w′). Then

I(t̄, w, w′) = I(t̄, z, z′) and P(t̄, w, w′) = P(t̄, z, z′).

Proof. The proof is an easy consequence of the previous definitions. �

Lemma 5.11. Let t1, t2 ≥ 0, w,w′ ∈ Wk(t1)∩Wk(t2). Assume that w,w′ are divided in the real solution
at time t1 and

0 ≤ tsplit(t1, w, w
′) ≤ t1 ≤ t2 < tint(t1, w, w

′).

Let J ∈ P(t2, w, w
′). Then either J ∩Wk(t1) = ∅ or J ∩Wk(t1) = J and J is an interval of waves at

time t1.

Proof. It is sufficient to prove the lemma for t1, t2 ∈ Nε. Fix t1 ∈ Nε, w,w′ ∈ Wk(t1) as in the statement
of the lemma. We prove the lemma by induction on times t2 ∈ Nε, t2 = t1, . . . , t

int(t1, w, w
′)− ε.

If t2 = t1 the proof is trivial. Hence assume that the lemma is proved for time t2 − ε and let us
prove it for time t2 ∈ Nε, with t1 + ε ≤ t2 ≤ tint(t1, w, w

′) − ε. Let J ∈ P(t2, w, w
′) and assume that

J ∩Wk(t1) 6= ∅. Let z ∈ J ∩Wk(t1), z′ ∈ J . Since z ∼ z′ at time t2 and z ∈ Wk(t1), with t1 < t2, by
definition of equivalence classes, there must be K ∈ P(t2 − ε, w,w′) such that z, z′ ∈ K and K ⊇ J . By
inductive assumption, K ∩Wk(t1) = K and thus

J ∩Wk(t1) = J ∩ K ∩Wk(t1) = J ∩ K = J ,

thus proving the first part of the statement.
Let now z, z′ ∈ J ⊆ K, y ∈ Wk(t1), z ≤ y ≤ z′. By inductive assumption y ∈ K; since K ∩Wk(t2)

with flux function feff
k (t2, ·) does not divide z, z′ and z ≤ y ≤ z′, we have that K∩Wk(t2) does not divide

z, z′, y and thus y ∈ J , thus proving also the second part of the lemma. �

Proposition 5.12. Let t̄ ≥ 0, let w,w′ ∈ Wk(t̄) be divided in the real solution at time t̄ and have the
same sign and let J ∈ P(t̄, w, w′). Then x(t̄, ·) is constant on J and the Riemann problem W(t̄, x(t̄,J ))
with flux function feff

k (t̄, ·) does not divide waves in J , i.e. also the map z 7→ σ̂k(t̄)(z) introduced in Point
(4) of the definition of Lagrangian representation is constant on J .

Proof. Clearly it is sufficient to prove the proposition for times iε, i ∈ N, since if the proposition is proved
at time iε it holds for times t ∈ [iε, (i + 1)ε). Hence let t̄ = iε for some i ∈ N. If w,w′ have never
interacted at time iε, then the proof is trivial, because J is a singleton.

Assume thus that w,w′ have already interacted at time iε. Let J ∈ P(iε, w,w′) and let z, z′ ∈ J . We
want to prove that

(5.5) x(iε, z) = x(iε, z′) and σ̂k(iε, z) = σ̂k(iε, z′).

We argue by induction on i.

(1) If iε = tsplit(iε, w,w′), then (5.5) is an immediate consequence of the definition of P(iε, w,w′).
(2) If iε > tsplit(iε, w,w′), two cases arise:

(a) tcr(z) = tcr(z′) = iε and z = z′: in this case the conclusion is trivial;
(b) there is K ∈ P((i−1)ε, w,w′) such that z, z′ ∈ K and the Riemann problem K∩Wk(iε) with

flux function feff
k (iε, ·) does not divide z, z′ (Point (2b) above); in this case by the inductive

assumption x((i− 1
2 )ε, ·) is constant on K and thus we can set

mε := x(iε,K ∩W(iε)).

Moreover, since the Riemann problem K∩Wk(iε) = K∩Wk(iε,mε) does not divide z, z′, by
Proposition A.4 also the Riemann problem Wk(iε,mε) does not divide z, z′, i.e. σ̂k(iε, z) =
σ̂k(iε, z′). �



QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF CONSERVATION LAWS 39

Definition 5.13. Let A,B two sets, A ⊆ B. Let P be a partition of B. We say that P can be restricted
to A if for any C ∈ P, either C ⊆ A or C ⊆ B \A. We also write

P|A :=
{
C ∈ P

∣∣ C ⊆ A}.
Clearly P can be restricted to A if and only if it can be restricted to B \A.

Proposition 5.14. Let t̄ ≥ 0 be a fixed time. Let w,w′, z, z′ ∈ W(t̄), z ≤ w < w′ ≤ z′, assume that w,w′

are divided in the real solution at time t̄ and they have the same sign. Then P(t̄, z, z′) can be restricted
both to I(t̄, z, z′) ∩ I(t̄, w, w′) and to I(t̄, z, z′) \ I(t̄, w, w′).

Proof. As before, it is sufficient to prove the proposition for times iε, i ∈ N. If z, z′ have never interacted
at time iε, the proof is immediate being the equivalent classes singletons. Hence, assume that z, z′ have
already interacted at time iε. Let J ∈ P(iε, z, z′) such that J ∩ I(iε, w,w′) 6= ∅. We want to prove that
J ⊆ I(iε, w,w′).

Assume first that w,w′ have never interacted at time iε. Suppose w.l.o.g. that tcr(w) ≤ tcr(w′), the
case tcr(w) > tcr(w′) being analogous. Since w,w′ have never interacted at time iε, while z, z′ have
already interacted, it must hold tcr(w′) > tsplit(iε, z, z′). It holds

∅ 6= J ∩ I(iε, w,w′) =

(
J ∩

{
y ∈ Wk(iε) big| S(y) = S(w) and y < E(iε, w′)

})
∪
(
J ∩ E(iε, w′)

)
.

Distinguish two cases:

(1) if J ∩ E(iε, w′) 6= ∅, since tcr(w′) > tsplit(iε, z, z′), J is a singleton by Point (2b), page 37, and
thus J ⊆ E(iε, w′) ⊆ I(iε, w,w′);

(2) otherwise, if J ∩ E(iε, w′) = ∅ and J ∩
{
y ∈ Wk(iε)

∣∣ S(y) = S(w) and y < E(iε, w′)
}
6= ∅, since

J is an interval of waves and E(iε, w′) 6= ∅, it must hold J ⊆
{
y ∈ Wk(iε)

∣∣ y < E(iε, w′)
}
⊆

I(iε, w,w′).

Assume now w,w′ have already interacted at time iε. We argue by induction.

(1) If iε = tsplit(iε, w,w′), then I(iε, w,w′) =Wk(iε, x(iε, w)) and thus J ∩Wk(iε, x(iε, w)) 6= ∅. By
Proposition 5.12, it must hold J ⊆ Wk(iε, x(iε, w)) = I(iε, w,w′).

(2) If iε > tsplit(iε, w,w′), assume that the proposition is proved for time (i − 1)ε. Distinguish two
more cases:
(a) at least one wave in J is created at time iε; in this case, J is a singleton and thus J ⊆
I(iε, w,w′);

(b) all the waves in J already exist at time (i− 1)ε; in this case by the definition of P(iε, z, z′),
there is K ∈ P((i− 1)ε, z, z′) such that J ⊆ K. Now observe that

∅ 6= J ∩ I(iε, w,w′)

= J ∩ I(iε, w,w′) ∩Wk((i− 1)ε)

(by Lemma 5.8, Point (3)) = J ∩ I((i− 1)ε, w,w′) ∩Wk(iε)

⊆ K ∩ I((i− 1)ε, w,w′) ∩Wk(iε)

⊆ K ∩ I((i− 1)ε, w,w′).

Hence, by inductive assumption, K ⊆ I((i− 1)ε, w,w′) and thus we can conclude, noticing
that

J ⊆ K ∩Wk(iε) ⊆ I((i− 1)ε, w,w′) ∩Wk(iε) = I(iε, w,w′) ∩Wk((i− 1)ε) ⊆ I(iε, w,w′),

where we have again used Lemma 5.8, Point (3). �

Proposition 5.15. Let t̄ ≥ 0 be a fixed time and let w,w′, z, z′ ∈ Wk(t̄), z ≤ w < w′ ≤ z′, and assume
that w,w′ are divided in the real solution at time t̄.

(1) If w,w′ have already interacted at time t̄, z, z′ ∈ I(t̄, w, w′) and tcr(z), tcr(z′) ≤ tsplit(t̄, w, w′),
then I(t̄, z, z′) = I(t̄, w, w′) and P(t̄, z, z′) = P(t̄, w, w′).

(2) If w,w′ have already interacted at time t̄, but at least one wave between z, z′ is created after
tsplit(t̄, w, w′), then z, z′ have never interacted at time t̄.

(3) If w,w′ have never interacted at time t̄,
• if tcr(w) ≤ tcr(w′) and z′ ∈ E(t̄, w′), then z, z′ have never interacted at time t̄;
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• if tcr(w) > tcr(w′) and z ∈ E(t̄, w), then z, z′ have never interacted at time t̄.

Proof. Let us prove the first point by recursion. As before it is sufficient to prove the proposition for
times iε, i ∈ N. If iε = tsplit(iε, w,w′), then the proof is obvious. Let thus iε > tsplit(iε, w,w′) and
assume that the proposition holds at time (i− 1)ε. Then by Point (2b) of Definition 5.7

I(iε, w,w′) =
{
y ∈ Wk(iε) big| S(y) = S(w) = S(w′)

and ∃ ỹ, ỹ′ ∈ I((i− 1)ε, w,w′) ∩Wk(iε) such that ỹ ≤ y ≤ ỹ′
}

(recursion) =
{
y ∈ Wk(iε) big| S(y) = S(z) = S(z′)

and ∃ ỹ, ỹ′ ∈ I((i− 1)ε, z, z′) ∩Wk(iε) such that ỹ ≤ y ≤ ỹ′
}

= I(iε, z, z′).

Now assume that y, y′ ∈ I(iε, w,w′) = I(iε, z, z′). Then it holds

y ∼ y′ w.r.t. P(iε, w,w′) ⇐⇒




y, y′ belong to the same equivalence
class J ∈ P((i− 1)ε, w,w′) at time (i− 1)ε
and the Riemann problem J ∩W(iε)
with flux feff

k (iε, ·) does not divide them


or
[ tcr(y) = tcr(y′) and y = y′ ](

by P((i− 1)ε, w,w′) = P((i− 1)ε, z, z′)
)

⇐⇒




y, y′ belong to the same equivalence
class J ∈ P((i− 1)ε, z, z′) at time (i− 1)ε
and the Riemann problem J ∩W(iε)
with flux function feff

k (iε, ·) does not divide them


or
[ tcr(y) = tcr(y′) and y = y′ ]

⇐⇒ y ∼ y′ w.r.t. the partition P(iε, z, z′).

Hence P(iε, w,w′) = P(iε, z, z′).
Let us now prove the second point, assuming w.l.o.g. that tcr(z) > tsplit(t̄, w, w′). Assume by contra-

diction that z, z′ have already interacted at time t̄. This means that there exists a time t̃ ≤ t̄ such that
x(t̃, z) = x(t̃, z′). Clearly t̃ ≥ tcr(z) > tsplit(t̄, w, w′). Therefore, at time t̃, w,w′, z, z′ ∈ Wk(t̃) and thus,
by the monotonicity of x, it should happen x(t̃, z) = x(t̃, w) = x(t̃, w′) = x(t̃, z′), a contradiction, since
t̄ ≥ t̃ > tsplit(t̄, w, w′).

Let us now prove the third part of the proposition. We consider only the case tcr(w) ≤ tcr(w′), the case
tcr(w) > tcr(w′) being completely similar. By contradiction, assume that z, z′ have already interacted
at time t̄. This means that there is a time t̃ ≤ t̄ such that x(t̃, z) = x(t̃, z′). Since z′ ∈ E(t̄, w′), it must
hold t̃ ≥ tcr(z′) = tcr(w′) ≥ tcr(w). Hence w,w′, z, z′ ∈ Wk(t̃) and by the monotonicity of x, we have
x(z) = x(w) = x(w′) = x(z′), a contradiction since w,w′ have never interacted at time t̄ ≥ t̃. �

6. The functional Qk

Now we have all the tools we need to define the functional Qk for k = 1, . . . , n and to prove that it
satisfies the inequality (1.8), thus obtaining the global part of the proof of Theorem 1.1.

In Section 6.1 we give the definition of Qk, using the intervals I(t̄, w, w′) and their partitions P(t̄, w, w′).
In Section 6.2 we state the main theorem of this last part of the paper, i.e. inequality (1.8) and we give
a sketch of its proof, which will be written down in details in Sections 6.3, 6.4, 6.5.

6.1. Definition of the functional Qk. We define now for each family k = 1, . . . , n, the functional
Qk = Qk(t), which bounds the change in speed of the waves in the approximate solution uε, or more
precisely, which satisfies (1.8). We first define the weight qk(t, τ, τ ′) of a pair of waves

w = Φk(t)−1(τ), w′ = Φk(t)−1(τ ′)) ∈ W±k , w < w′,
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at time t, and then we define the functional Qk(t) as the sum (integral) over all pairs (τ, τ ′) of the weight
qk(t, τ, τ ′).

Let us start with the definition of the weights qk(t, τ, τ ′) at times t = iε, i ∈ N. Fix iε ∈ Nε and
let τ, τ ′ ∈ (0, L+

k (iε)] (resp. τ, τ ′ ∈ [L−k (iε), 0)); τ, τ ′ correspond to the two waves w := Φk(iε)−1(τ),
w′ := Φk(iε)−1(τ ′) in Wk(iε) having the same sign. We define the weight associated to the pair (τ, τ ′) at
time iε as follows:

• if w,w′ are not divided in the real solution at time iε or if they are divided but they will never
interact after time iε, set

qk(iε, τ, τ ′) := 0;

• if w,w′ are divided in the real solution at time iε and they will interact after time iε, set

qk(iε, τ, τ ′) :=
πk(iε, τ, τ ′)

dk(iε, τ, τ ′)
,

where πk(iε, τ, τ ′), dk(iε, τ, τ ′) are defined as follows. Since w,w′ will interact after time iε, then iε <
tint(iε, w,w′). Let

J ,J ′ ∈ P(iε, w,w′), such that w ∈ J , w′ ∈ J ′,
K,K′ ∈ P(tint(iε, w,w′)− ε, w,w′), such that w ∈ K, w′ ∈ K′.

(6.1)

be the element of the partition containing w,w′ at time iε and at time tint(iε, w,w′)−ε respectively, and
set

(6.2) G := K ∪
{
z ∈ J

∣∣ z > K}, G′ := K′ ∪
{
z ∈ J ′

∣∣ z < K},
and

B := K ∪
{
z ∈ Wk(iε)

∣∣ S(z) = S(w) = S(w′) and K < z < K′
}
∪ K′.

By Lemma 5.11, G,G′ are i.o.w.s at time iε. We can now define

(6.3) πk(iε, τ, τ ′) :=
[
σrh(feff

k (iε),G)− σrh(feff
k (iε),G′)

]+
and

(6.4) dk(iε, τ, τ ′) := L1
(
Φk(iε)(B)

)
.

As usual, set

qk(t, τ, τ ′) = qk(iε, τ, τ ′) for t ∈ [iε, (i+ 1)ε).

Remark 6.1. It is easy to see that qk(iε, τ, τ ′) is uniformly bounded: in fact,

0 ≤ qk(iε, τ, τ ′) =
πk(iε, τ, τ ′)

dk(iε, τ, τ ′)
≤ ‖D2feff

k (t̄)‖∞ ≤ O(1).

We can finally define the functional Qk(t) as

Qk(t) := Q+
k (t) + Q−k (t),

where

Q+
k (t) :=

∫ L+
k (t)

0

dτ

∫ L+
k (t)

τ

dτ ′qk
(
t, τ, τ ′

)
and

Q−k (t) :=

∫ 0

L−k (t)

dτ

∫ 0

τ

dτ ′qk
(
t, τ ′, τ

)
.

Remark 6.2. Clearly Qk(t) is constant on the time intervals [iε, (i+ 1)ε) and it changes its value only
at times iε, i ∈ N.
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Sm−1

JL
m

JR
m−1 JR

m

Km \ Jm

Tm−1

Tm

t

x

I or Wk

Sm

Sm

(iε, (m− 2)ε)
(iε, (m− 1)ε)

((i− 1)ε, (m− 2)ε)

((i− 1)ε, (m− 1)ε) ((i− 1)ε,mε)

(iε,mε)

Figure 5. The quantities defined in (6.6): JLm (resp. JRm) are the waves at ((i−1)ε, (m−
1)ε) (resp. ((i − 1)ε,mε)) which travel towards (iε,mε); Sm is made by all the waves
in Jm := JLm ∪ JRm which are not canceled at time iε, while the map of Sm at (iε,mε)
gives the transmitted waves Tm; finally Km is the set of all waves at (iε,mε) and thus
the created waves at (iε,mε) are those in Km \ Tm.

6.2. Statement of the main theorem and sketch of the proof. We now state the main theorem
of this last part of the paper and give a sketch of its proof: with this theorem, the proof of the Theorem
1.1 is completed.

Theorem 6.3. For any i ∈ N, i ≥ 1, it holds

Qk(iε)−Qk((i− 1)ε) ≤ −
∑
m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0);R)

∑
m∈Z

A(iε,mε).(6.5)

Sketch of the proof. First of all observe that it is sufficient to prove inequality (6.5) separately for Q+
k

and Q−k . In particular, we will prove only that

Q+
k (iε)−Q+

k ((i− 1)ε) ≤ −
∑
m∈Z

S(Wk(iε,mε))=1

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0);R)

∑
m∈Z

A(iε,mε),

since the proof of the same inequality for Q−k is completely similar.
For any m ∈ Z, set (see Figure 5)

JLm := Φk((i− 1)ε)
(
W(1)
k

(
(i− 1)ε, (m− 1)ε

)
∩W+

k ((i− 1)ε)
)
,

JRm := Φk((i− 1)ε)
(
W(0)
k

(
(i− 1)ε,mε

)
∩W+

k ((i− 1)ε)
)
,

Jm := JLm ∪ JRm,

Km := Φk(iε)
(
Wk(iε,mε) ∩W+

k (iε)
)
,

Sm := Φk((i− 1)ε)
((

Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε)

)
∩W+

k ((i− 1)ε)
)
,

Tm := Φk(iε)
((

Σ
(1)
k (iε,mε) ∪ Σ

(0)
k (iε,mε)

)
∩W+

k (iε)
)
.

(6.6)

Observe that if τ, τ ′ ∈ JLm (or τ, τ ′ ∈ JRm), then Φ−1
k ((i− 1)ε)(τ), Φ−1

k ((i− 1)ε)(τ ′) are not divided in the
real solution at time (i− 1)ε and thus qk((i− 1)ε, τ, τ ′) = 0.
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Similarly, if τ, τ ′ ∈ Km, τ < τ ′, setting w := Φ−1
k (iε)(τ), w′ := Φ−1

k (iε)(τ ′) then either w,w′ are not
divided at time iε, and thus qk(iε, τ, τ ′) = 0, or they are divided at time iε, i.e. they have different
positions at times t ∈ (iε, (i+ 1)ε); in this second case, with the same notations as in (6.1)-(6.2), we can
use the monotonicity properties of the derivative of the convex envelope and the fact that the element of
the partition P(iε, w,w′) are entropic w.r.t. the function feff

k (iε) to obtain

0 ≥ σrh(feff
k (iε),J )− σrh(feff

k (iε),J ′) ≥ σrh(feff
k (iε),G)− σrh(feff

k (iε),G′),

and thus πk(iε, τ, τ ′) = 0 = qk(iε, τ, τ ′).
We can thus perform the following computation:

Q+
k (iε)−Q+

k ((i− 1)ε) ≤
∑
m<m′

[∫∫
Tm×Tm′

qk(iε, τ, τ ′)dτdτ ′ +

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk(iε, τ, τ ′)dτdτ ′

−
∫∫

Sm×Sm′
qk((i− 1)ε, τ, τ ′)dτdτ ′

]

−
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε, τ, τ ′)dτdτ ′.

We will now separately study:

(1) in Section 6.3, the integral over pairs of waves such that at least one of them is created at time
iε:

(6.7)
∑
m<m′

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk(iε, τ, τ ′)dτdτ ′ ≤ O(1)Tot.Var.(u(0))
∑
m∈Z

A(iε,mε).

(2) in Section 6.4, the variation of the integral over pairs of waves which exist both at time (i − 1)ε
and at time iε:

(6.8)
∑
m<m′

[∫∫
Tm×Tm′

qk(iε)dτdτ ′ −
∫∫

Sm×Sm′
qk((i− 1)ε)dτdτ ′

]
≤ O(1)Tot.Var.(u(0))

∑
r∈Z

A(iε, rε).

(3) in Section 6.5, the (negative) term, related to pairs of waves which are divided at time (i − 1)ε
and are interacting at time iε:

(6.9)

−
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε)dτdτ ′ ≤ −
∑
m∈Z

S(Wk(iε,mε))=1

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0))

∑
m∈Z

A(iε,mε).

It is easy to see that inequality (6.5) in the statement of Theorem 6.3 follows from (6.7), (6.8), (6.9). �

6.3. Analysis of pairs with at least one created wave. The integral over pair of waves such that
at least one of them is created at time iε is estimated in the following proposition.

Proposition 6.4. It holds∑
m<m′

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk(iε, τ, τ ′)dτdτ ′ ≤ O(1)Tot.Var.(u(0))
∑
m∈Z

A(iε,mε).

Proof. In fact,

L2
(
(Km ×Km′) \ (Tm × Tm′)

)
≤ L2

(
(Km \ Tm)×Km′

)
+ L2

(
Km × (Km′ \ Tm′)

)
≤ L1(Km′)L1(Km \ Tm) + L1(Km)L1(Km′ \ Tm′).
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Hence ∑
m<m′

∫∫
(Km×Km′ )\(Tm×Tm′ )

qk(iε, τ, τ ′)dτdτ ′

≤ O(1)
∑
m<m′

L2
(
(Km ×Km′) \ (Tm × Tm′)

)
≤ O(1)

∑
m<m′

L1(Km′)L1(Km \ Tm) + L1(Km)L1(Km′ \ Tm′)

≤ O(1)
∑
m′∈Z

L1(Km′)
∑
m∈Z
L1(Km \ Tm)

≤ O(1)L+
k (iε)

∑
m∈Z

Acr
k (iε,mε)

(by (2.11) and Corollary 2.10) ≤ O(1)Tot.Var.(u(0))
∑
m∈Z

A(iε,mε). �

6.4. Analysis of pairs of waves which exist both at time (i−1)ε and at time iε. The aim of this
section is to estimate the variation of the integral over pair of waves which exist both at time (i − 1)ε
and at time iε. More precisely we prove the following theorem.

Theorem 6.5. It holds∑
m<m′

[∫∫
Tm×Tm′

qk(iε, τ, τ ′)dτdτ ′ −
∫∫

Sm×Sm′
qk((i− 1)ε, τ, τ ′)dτdτ ′

]
≤ O(1)Tot.Var.(u(0))

∑
r∈Z

A(iε, rε).

(6.10)

We first need a preliminary result. As a starting point, observe that for each m ∈ Z, by Points (a)
and (b) of Theorem 4.1, the map

Θ : Sm → Tm, Θ := Φk(iε) ◦ Φk((i− 1)ε)−1,

is an affine function with slope 1. We now prove the following lemma, which estimates the change of the
numerator πk and the denominator dk in the definition of qk, formulas (6.3) and (6.4).

Lemma 6.6. For any m < m′ and for any τ ∈ Sm, τ ′ ∈ Sm′ , setting

(6.11a) ∆dk(τ, τ ′) := dk
(
iε,Θ(τ),Θ(τ ′)

)
− dk

(
(i− 1)ε, τ, τ ′

)
,

(6.11b) ∆πk(τ, τ ′) := πk
(
iε,Θ(τ),Θ(τ ′)

)
− πk

(
(i− 1)ε, τ, τ ′

)
.

the following inequalities hold:

∣∣∆dk(τ, τ ′)
∣∣ ≤ O(1)

m′∑
r=m

A(iε, rε), ∆πk(τ, τ ′) ≤ O(1)

m′∑
r=m

A(iε, rε).

Proof. Fix w := Φk((i− 1)ε)−1(τ), w′ := Φk((i− 1)ε)−1(τ ′) and let

J ,J ′ ∈ P((i− 1)ε, w,w′), w ∈ J , w′ ∈ J ′,

J̃ , J̃ ′ ∈ P(iε, w,w′), w ∈ J̃ , w′ ∈ J̃ ′,
K,K′ ∈ P(tint(iε, w,w′)− ε, w,w′), w ∈ K, w′ ∈ K′.

Set also

A := K ∪
{
z ∈ W+

k ((i− 1)ε)
∣∣ K < z < K′

}
∪ K′, B := K ∪

{
z ∈ W+

k (iε)
∣∣ K < z < K′

}
∪ K′.

It is easy to see that

(6.12) A ⊆
m′⋃
r=m

{
w ∈ Wk((i− 1)ε)

∣∣ lim
t→iε

x(t, w) = rε
}
, B ⊆

m′⋃
r=m

Wk(iε,mε).
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Moreover, it holds

A =
(
A \Wk(iε)

)
∪
(
A ∩Wk(iε)

)
=
(
A \Wk(iε)

)
∪

m′⋃
r=m

(
A ∩Wk(iε, rε)

)
and

B =
(
B \Wk((i− 1)ε)

)
∪
(
B ∩Wk((i− 1)ε)

)
=
(
B \Wk((i− 1)ε)

)
∪

m′⋃
r=m

(
B ∩Wk((i− 1)ε) ∩Wk(iε, rε)

)
.

Notice that for any r = m, . . . ,m′

(6.13) A ∩Wk(iε, rε) = B ∩Wk((i− 1)ε) ∩Wk(iε, rε),

and thanks to this equality and Corollary 4.4, the set in (6.13) is an interval of waves both at time (i−1)ε
and at time iε. Hence, by Point (3) of Corollary 4.4,

(6.14)
Θ : Φk

(
(i− 1)ε

)(
A ∩Wk(iε, rε)

)
→ Φk

(
iε
)(
B ∩Wk((i− 1)ε) ∩Wk(iε, rε)

)
,

τ 7→ Θ := Φk(iε) ◦ Φk((i− 1)ε)−1(τ)

is an affine function with slope equal to 1 and thus

(6.15) L1
(

Φk((i− 1)ε)
(
A ∩Wk(iε, rε)

))
= L1

(
Φk(iε)

(
B ∩Wk((i− 1)ε) ∩Wk(iε, rε)

))
.

We now prove separately the two inequalities of the statement.

Proof of (6.11a). We have∣∣∆d(τ, τ ′)
∣∣ =

∣∣d(iε,Θ(τ),Θ(τ ′)
)
− d
(
(i− 1)ε, τ, τ ′

)∣∣
=
∣∣∣L1
(

Φk(iε)
(
B
))
− L1

(
Φk((i− 1)ε)

(
A
))∣∣∣

=

∣∣∣∣L1
(
Φk(iε)

(
B \Wk((i− 1)ε)

))
+

m′∑
r=m

L1
(

Φk(iε)
(
B ∩Wk((i− 1)ε) ∩Wk(iε,mε)

))

− L1
(

Φk((i− 1)ε)
(
A \Wk(iε)

))
−

m′∑
r=m

L1
(

Φk((i− 1)ε)
(
A ∩Wk(iε, rε)

))∣∣∣∣
(by (6.15)) ≤

∣∣∣L1
(

Φk(iε)
(
B \Wk((i− 1)ε)

))∣∣∣+
∣∣∣L1
(

Φk((i− 1)ε)
(
A \Wk(iε)

))∣∣∣
(by (6.12)) ≤

m′∑
r=m

Acr
k (iε, rε) + Acanc

k (iε, rε)

(by Cor. 2.10) ≤
m′∑
r=m

A(iε, rε).

Proof of (6.11b). The proof of the second inequality in (6.11) is more involved. Define

F := K ∪
(
J ∩

{
z ∈ Wk((i− 1)ε)

∣∣ z > K}), F ′ := K′ ∪
(
J ′ ∩

{
z ∈ Wk((i− 1)ε)

∣∣ z < K′}),
G := K ∪

(
J̃ ∩

{
z ∈ Wk(iε)

∣∣ z > K}), G′ := K′ ∪
(
J̃ ′ ∩

{
z ∈ Wk(iε)

∣∣ z < K′});

F ,F ′ are i.o.w.s at time (i− 1)ε, while G,G′ are i.o.w.s at time iε. Hence the sets

F := Φk((i− 1)ε)(F), F ′ := Φk((i− 1)ε)(F ′),
G := Φk(iε)(G), G′ := Φk(iε)(G′),

are intervals in R. Moreover, since τ 7→ feff
k (t)(τ) is defined up to affine function, we can assume that

(6.16)
dfeff
k (iε)

dτ

(
inf Φk(iε)(K)

)
=
dfeff
k ((i− 1)ε)

dτ

(
inf Φk((i− 1)ε)(K)

)
= 0.

We divide now the proof of the second inequality in several steps.
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B

A

G

F

K K′
tint − ε

iε

(i− 1)ε

J̃ Wk(iε) J̃ ′

G ′

Wk((i− 1)ε)

H

J J ′

H′
F ′

Figure 6. The various set used in the proof of (6.11b): in Step 2 pass from the waves in
F ,F ′ to the waves H,H′ which survives at t = iε; in Step 3 change the flux feff

k ((i−1)ε)
to feff

k (iε) for the intervals H,H′; in Step 4 observe that G,G′ are shorter that H,H′
because of a splitting has occurred.

Step 1. Define

H := K ∪
{
z ∈ J ∩Wk(iε)

∣∣ z > K}, H′ := K′ ∪
{
z ∈ J ′ ∩Wk(iε)

∣∣ z < K′}.
We now show that the sets H,H′ are i.o.w.s both at time iε and at time (i− 1)ε and

H ⊆ J ∩Wk(iε), H′ ⊆ J ′ ∩Wk(iε).

Moreover also the sets

Hi−1 := Φk((i− 1)ε)(H), Hi := Φk(iε)(H),

H ′i−1 := Φk((i− 1)ε)(H′), H ′i := Φk(iε)(H′),
are intervals in R.

Proof of Step 1. We prove only the statements related to H, those related to H′ being completely
analogous. Clearly H ⊆ J ∩Wk(iε). Moreover the set

M :=
{
z ∈ Wk(iε)

∣∣ z ∈ K or z > K
}

is clearly an i.o.w. at time iε. Since we can write H as intersection of two i.o.w.s at time iε as

H =M∩
(
J ∩Wk(iε)

)
,

it follows that also H is an i.o.w. at time iε. Moreover, since H = H∩Wk((i− 1)ε), by Proposition 5.12
and Corollary 4.4, Point (2), H is an i.o.w. also at time (i− 1)ε. As an immediate consequence Hi−1 and
Hi are intervals in R.

Step 2. We have

Hi−1 ⊆ F, L1(F )− L1(Hi−1) ≤ Acanc(iε,mε),

and ∣∣∣σrh(feff
k ((i− 1)ε),H)− σrh(feff

k ((i− 1)ε),F)
∣∣∣ ≤ O(1)Acanc

k (iε,mε).

Similarly, H ′i−1 ⊆ F ′, L1(F ′)− L1(H ′i−1) ≤ Acanc(iε,m′ε) and∣∣∣σrh(feff
k ((i− 1)ε),H′)− σrh(feff

k ((i− 1)ε),F ′)
∣∣∣ ≤ O(1)Acanc

k (iε,m′ε).
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Proof of Step 2. We prove only the first part of the statement, the second one being completely similar.
Clearly H ⊆ F . Hence Hi−1 = Φk((i− 1)ε)(H) ⊆ Φk((i− 1)ε)(F) = F . Moreover, by Proposition 5.12,
it follows that

F \ H ⊆
{
w ∈ Wk((i− 1)ε) \Wk(iε)

∣∣ lim
t→iε

x(t, w) = mε
}

and thus

L1(F )− L1(Hi−1) = L1(Φk((i− 1)ε)(F))− L1(Φk((i− 1)ε)(H))

= L1(Φk((i− 1)ε)(F \ H))

≤ L1
({
w ∈ Wk((i− 1)ε) \Wk(iε)

∣∣ lim
t→iε

x(t, w) = mε
})

≤ Acanc
k (iε,mε).

Moreover, by Proposition A.7,∣∣∣σrh(feff
k ((i− 1)ε,H)− σrh(feff

k ((i− 1)ε,F)
∣∣∣ ≤ L1(F )− L1(Hi−1) ≤ O(1)Acanc

k (iε,mε).

Step 3. It holds ∣∣∣σrh(feff
k (iε),H)− σrh

(
feff
k ((i− 1)ε),H

)∣∣∣ ≤ O(1)

m′∑
r=m

A(iε, rε),

∣∣∣σrh(feff
k (iε),H′)− σrh

(
feff
k ((i− 1)ε),H′

)∣∣∣ ≤ O(1)

m′∑
r=m

A(iε, rε).

Proof of Step 3. In this step, we prove only the second inequality and assume that L1(Hi) = L1(Hi−1) > 0,
since the first inequality and the other cases can be treated similarly (and actually the computations are
simpler).

We have∣∣∣σrh(feff
k (iε),H′)− σrh(feff

k ((i− 1)ε),H′)
∣∣∣

=

∣∣∣∣ 1

L1(H ′i)

∫
H′i

dfeff
k (iε)

dς
(ς)dς − 1

L1(H ′i−1)

∫
H′i−1

dfeff
k ((i− 1)ε)

dτ
(τ)dτ

∣∣∣∣
(by (6.16)) =

∣∣∣∣ 1

L1(H ′i)

∫
H′i

∫ ς

inf Φk(iε)(K)

d2feff
k (iε)

dξ2
(ξ)dξdς

− 1

L1(H ′i−1)

∫
H′i−1

∫ τ

inf Φk((i−1)ε)(K)

d2feff
k ((i− 1)ε)

dη2
(η)dηdτ

∣∣∣∣,
and, remembering that L1(H ′i) = L1(H ′i−1) and integrating by parts,

. . . =
1

L1(H ′i)

∣∣∣∣ ∫ supH′i

inf Φk(iε)(K)

d2feff
k (iε)

dξ2
(ξ)
(

supH ′i −max
{
ξ, inf H ′i

})
dξ

−
∫ supH′i−1

inf Φk((i−1)ε)(K)

d2feff
k ((i− 1)ε)

dη2
(η)
(

supH ′i−1 −max
{
η, inf H ′i−1

})
dη

∣∣∣∣
=

1

L1(H ′i)

∣∣∣∣∣
m′∑
r=m

∫
[inf Φk(iε)(K),supH′i]∩Kr

d2feff
k (iε)

dξ2
(ξ)
(

supH ′i −max
{
ξ, inf H ′i

})
dξ

−
m′∑
r=m

∫
[inf Φk((i−1)ε)(K),supH′i−1]∩Jr

d2feff
k ((i− 1)ε)

dη2
(η)
(

supH ′i−1 −max
{
η, inf H ′i−1

})
dη

∣∣∣∣∣,



48 STEFANO BIANCHINI AND STEFANO MODENA

where Kr, Jr are defined in (6.6); using now that L1(Kr\Tr) = Acr
k (iε, rε), while L1(Jr\Sr) = Acanc

k (iε, rε)
we can proceed as

. . . =
1

L1(H ′i)

∣∣∣∣∣
m′∑
r=m

O(1)L1(Hi)
(
Acr
k (iε, rε) + Acanc

k (iε, rε)
)

+

m′∑
r=m

∫
[inf Φk(iε)(K),supH′i]∩Tr

d2feff
k (iε)

dξ2
(ξ)
(

supH ′i −max
{
ξ, inf H ′i

})
dξ

−
m′∑
r=m

∫
[inf Φk((i−1)ε)(K),supH′i−1]∩Sr

d2feff
k (iε)

dη2
(η)
(

supH ′i−1 −max
{
η, inf H ′i−1

})
dη

∣∣∣∣∣,
using that the function Θ : [inf Φk((i− 1)ε)(K), supH ′i−1] ∩ Sr → [inf Φk(iε)(K), supH ′i] ∩ Tr introduced
in (6.14) is an affine bijection with derivative 1,

. . . ≤ 1

L1(H ′i)

m′∑
r=m

O(1)L1(Hi)
(
Acr
k (iε,mε) + Acanc

k (iε,mε)
)

+
1

L1(H ′i)

∣∣∣∣∣
m′∑
r=m

∫
[inf Φk((i−1)ε)(K),supH′i−1]∩Sr

[
d2feff

k (iε)

dξ2

(
Θ(η)

)
− d2feff

k ((i− 1)ε)

dη2
(η)

]

·
(

supH ′i−1 −max
{
η, inf H ′i−1

})
dη

∣∣∣∣∣
≤ O(1)

m′∑
r=m

(
Acr
k (iε, rε) + Acanc

k (iε, rε)
)

+

m′∑
r=m

∫
Sr

∣∣∣∣d2feff
k (iε)

dξ2

(
Θ(η)

)
− d2feff

k ((i− 1)ε)

dη2
(η)

∣∣∣∣dη
≤ O(1)

m′∑
r=m

(
Acr
k (iε, rε) + Acanc

k (iε, rε) +

∥∥∥∥d2feff
k (iε)

dξ2
◦Θ− d2feff

k ((i− 1)ε)

dη2

∥∥∥∥
L1(Sr)

)
,

and finally by Theorem 3.3 and Corollary 2.10∣∣∣σrh(feff
k (iε),H′)− σrh(feff

k ((i− 1)ε),H′)
∣∣∣

≤ O(1)

m′∑
r=m

(
Acr
k (iε, rε) + Acanc

k (iε, rε) +

∥∥∥∥d2feff
k (iε)

dξ2
◦Θ− d2feff

k ((i− 1)ε)

dη2

∥∥∥∥
L1(Sr)

)

≤ O(1)
m′∑
r=m

A(iε, rε).

Step 4. It holds[
σrh(feff

k (iε),G)− σrh(feff
k (iε),G′)

]+
−
[
σrh(feff

k (iε),H)− σrh(feff
k (iε),H′)

]+
≤ 0.

Proof of Step 4. We want to use Proposition A.8 with

g = feff
k (iε), [a, b] = Φk(iε)(J ∩Wk(iε)), ū = sup Φk(iε)(J̃ ), u = inf Φk(iε)(K).

Indeed, by definition of the partition P(iε, w,w′) (Point (2b) at page 37), it holds

conv
Φk(iε)(J∩Wk(iε))

feff
k (iε)(sup Φk(iε)(J̃ )) = feff

k (iε)(sup Φk(iε)(J̃ )),

i.e. conv
[a,b]

g(ū) = g(ū).
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We thus have

σrh(feff
k (iε),G) = σrh

(
feff
k (iε),

[
inf Φk(iε)(K), sup Φk(iε)(J̃ )

])
≤ σrh

(
feff
k (iε),

[
inf Φk(iε)(K), sup Φk(iε)(J ∩Wk(iε))

])
= σrh(feff

k (iε),H).

(6.17)

In a similar way one can prove that

(6.18) σrh(feff
k (iε,G′) ≥ σrh(feff

k (iε,H′).

Using (6.17) and (6.18), one gets the conclusion.

Step 5. We can finally conclude the proof of (6.11b), showing that

∆π(τ, τ ′) ≤ O(1)

m′∑
r=m

A(iε,mε).

Proof of Step 5. We can perform the following computation:

∆π(τ, τ ′)

= π(iε,Θ(τ),Θ(τ ′))− π((i− 1)ε, τ, τ ′)

=
[
σrh(feff

k (iε),G)− σrh(feff
k (iε),G′)

]+
−
[
σrh(feff

k ((i− 1)ε),F)− σrh(feff
k ((i− 1)ε),F ′)

]+
=
[
σrh(feff

k (iε),G)− σrh(feff
k (iε),G′)

]+
−
[
σrh(feff

k (iε),H)− σrh(feff
k (iε),H′)

]+
+
[
σrh(feff

k (iε),H)− σrh(feff
k (iε),H′)

]+
−
[
σrh(feff

k ((i− 1)ε),H)− σrh(feff
k ((i− 1)ε),H′)

]+
+
[
σrh(feff

k ((i− 1)ε),H)− σrh(feff
k ((i− 1)ε),H′)

]+
−
[
σrh(feff

k ((i− 1)ε),F)− σrh(feff
k ((i− 1)ε),F ′)

]+
≤
[
σrh(feff

k (iε),G)− σrh(feff
k (iε),G′)

]+
−
[
σrh(feff

k (iε),H)− σrh(feff
k (iε),H′)

]+
+
∣∣∣σrh(feff

k (iε),H)− σrh(feff
k ((i− 1)ε),H)

∣∣∣+
∣∣∣σrh(feff

k (iε),H′)− σrh(feff
k ((i− 1)ε),H′)

∣∣∣
+
∣∣∣σrh(feff

k ((i− 1)ε),H)− σrh(feff
k ((i− 1)ε),F)

∣∣∣+
∣∣∣σrh(feff

k ((i− 1)ε),H′)− σrh(feff
k ((i− 1)ε),F ′)

∣∣∣
(by Steps 2, 3, 4 above)

≤ O(1)

m′∑
r=m

A(iε),mε). �

This concludes the proof of Lemma 6.6. �

We can now prove Theorem 6.5.

Proof of Theorem 6.5. Fix m < m′, τ ∈ Sm, τ ′ ∈ Sm′ and define

∆qk(τ, τ ′) := qk
(
iε,Θ(τ),Θ(τ ′)

)
− qk

(
(i− 1)ε, τ, τ ′

)
.
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Since m < m′, it follows that ∆qk(τ, τ ′) can be greater or equal than 0 only if Φk((i − 1)ε)−1(τ),
Φk((i− 1)ε)−1(τ ′) will interact after time iε. In this case it holds

∆qk(τ, τ ′) = qk
(
iε,Θ(τ),Θ(τ ′)

)
− qk

(
(i− 1)ε, τ, τ ′

)
=
π
(
iε,Θ(τ),Θ(τ ′)

)
d
(
iε,Θ(τ),Θ(τ ′)

) − π
(
(i− 1)ε, τ, τ ′

)
d
(
(i− 1)ε, τ, τ ′

)
≤ π

(
iε,Θ(τ),Θ(τ ′)

)( 1

d
(
iε,Θ(τ),Θ(τ ′)

) − 1

d
(
(i− 1)ε, τ, τ ′

))
+

1

d
(
(i− 1)ε, τ, τ ′

)(π(iε,Θ(τ),Θ(τ ′)
)
− π

(
(i− 1)ε, τ, τ ′

))
=

1

d
(
(i− 1)ε, τ, τ ′

) π(iε,Θ(τ),Θ(τ ′)
)

d
(
iε,Θ(τ),Θ(τ ′)

)∆d(τ, τ ′) +
1

d
(
(i− 1)ε, τ, τ ′

)∆π(τ, τ ′)

≤ O(1)
1

d
(
(i− 1)ε, τ, τ ′

)(∣∣∆d(τ, τ ′)
∣∣+ ∆π(τ, τ ′)

)
≤ O(1)

1

τ ′ − τ

(∣∣∆d(τ, τ ′)
∣∣+ ∆π(τ, τ ′)

)
(by Lemma 6.6) ≤ O(1)

1

τ ′ − τ

m′∑
r=m

A(iε, rε).

(6.19)

As observed before, for each m ∈ Z, by Point (b) of Theorem 4.1, the map

Θ : Sm → Tm, Θ := Φk(iε) ◦ Φk((i− 1)ε)−1,

is an affine function with slope 1. Hence for any pair of integers m < m′ it is well defined the change of
variable

Θ×Θ : Sm × Sm′ → Tm × Tm′ ,

and we have ∫∫
Tm×Tm′

qk(iε, ς, ς ′)dςdς ′ =

∫∫
Sm×Sm′

qk(iε,Θ(τ),Θ(τ ′))dτdτ ′.(6.20)

We can now estimate the l.h.s of (6.10) as follows:

∑
m<m′

[∫∫
Tm×Tm′

qk(iε)dτdτ ′ −
∫∫

Sm×Sm′
qk((i− 1)ε)dτdτ ′

]

(by (6.20)) =
∑
m<m′

∫∫
Sm×Sm′

[
qk
(
iε,Θ(τ),Θ(τ ′)

)
− qk

(
(i− 1)ε, τ, τ ′

)]
dτdτ ′

(by (6.19)) ≤ O(1)
∑
m<m′

∫∫
Sm×Sm′

1

τ ′ − τ

m′∑
r=m

A(iε, rε)dτdτ ′

= O(1)

[∑
r∈Z

A(iε, rε)

r∑
m=−∞

+∞∑
m′=r+1

∫∫
Sm×Sm′

1

τ ′ − τ
dτdτ ′

+
∑
r∈Z

A(iε, rε)

r−1∑
m=−∞

∫∫
Sm×Sr

1

τ ′ − τ
dτdτ ′

]

≤ O(1)

[∑
r∈Z

A(iε, rε)

∫ supSr

0

∫ +∞

inf Sr+1

1

τ ′ − τ
dτdτ

+
∑
r∈Z

A(iε, rε)

∫ supSr−1

0

∫ +∞

inf Sr

1

τ ′ − τ
dτdτ ′

]
,
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and since supSr−1 < inf Sr ≤ supSr < inf Sr+1 after an elementary integration by parts,

. . . ≤ O(1)Lk
(
(i− 1)ε

)∑
r∈Z

A(iε,mε)

(by (2.11)) ≤ O(1)Tot.Var.(u(0))
∑
r∈Z

A(iε,mε),

thus concluding the proof of Theorem 6.5. �

6.5. Analysis of interacting waves. This section is devoted to conclude the proof of Theorem 6.3,
showing that inequality (6.9) holds, i.e. estimating the (negative) term related to pairs of waves which
are divided at time (i − 1)ε and are interacting at time iε. In particular we will prove the following
theorem:

Theorem 6.7. The following estimate holds:

(6.21) −
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε)dτdτ ′ ≤ −
∑
m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0))

∑
m∈Z

A(iε,mε).

To prove this theorem, we first study the change of the l.h.s. of (6.21) due to transversal interac-
tions (Lemma 6.8) and then we study the interaction between waves of the same family and same sign
(Proposition 6.9).

First of all we introduce the following notations. Fix m ∈ Z and assume JLm, J
R
m 6= ∅ (see (6.6) for the

definition). Consider the grid point (iε,mε) and the two incoming Riemann problems (ui,m−1, ui−1,m−1)
and (ui−1,m−1, ui,m). Assume that

ui−1,m−1 = Tns′n ◦ · · · ◦ T
1
s′1
ui,m−1, ui,m = Tns′′n ◦ · · · ◦ T

1
s′′1
ui−1,m−1,

and that their elementary curves are

γ′1 = (u′1, v
′
1, σ
′
1) := γ1(ui,m−1, s′1), γ′h = (u′h, v

′
h, σ
′
h) := γh

(
u′h−1(s′h−1), s′h

)
, for h = 2, . . . , n,

γ′′1 = (u′′1 , v
′′
1 , σ

′′
1 ) := γ1(ui−1,m−1, s′′1), γ′′h = (u′′h, v

′′
h, σ

′′
h) := γh

(
u′′h−1(s′′h−1), s′′h

)
, for h = 2, . . . , n,

see Section 2.1 for the notation.
We are interested in the k-th family. Denote by f ′k, f

′′
k the reduced fluxes associated respectively to

γ′k, γ
′′
k and w.l.o.g. assume that f ′k, f

′′
k are defined respectively on JLm, JRm. Now consider the collection

of curves

γ̃′1 = (ũ′1, ṽ
′
1, σ̃
′
1) := γ1(ui,m−1, s′1), γ̃′′1 = (ũ′′1 , ṽ

′′
1 , σ̃

′′
1 ) := γ1(u′1(s′1), s′′1),

γ̃′h = (ũ′h, ṽ
′
h, σ̃
′
h) := γh

(
ũ′′h−1(s′′h−1), s′h

)
, γ̃′′h = (ũ′′h, ṽ

′′
h, σ̃

′′
h) := γh

(
ũ′h(s′h), s′′h

)
, for h = 2, . . . , n.

This is the situation after the transversal interactions considered at the beginning of Section 3, see Figure
1. For the k-th (fixed) family, denote by f̃ ′k, f̃

′′
k the reduced fluxes associated to the curves γ̃′k, γ̃

′′
k and let

f̃ := f̃ ′k ∪ f̃ ′′k .

As before, w.l.o.g. assume that f̃ ′k, f̃
′′
k are defined respectively on JLm, JRm.

For any (τ, τ ′) ∈ JLm × JRm, consider w := Φk((i − 1)ε)−1(τ), w′ := Φk((i − 1)ε)−1(τ ′) and define the
quantity

q̃k(τ, τ ′) :=
π̃k(τ, τ ′)

dk((i− 1)ε, τ, τ ′)
,

where π̃(τ, τ ′) is defined as follows: if J ,J ′ ∈ P((i− 1)ε, w,w′) are the element of the partition at time

(i− 1)ε containing w,w′ respectively, then π̃(τ, τ ′) is defined as in (6.3), with f̃ instead of feff
k ((i− 1)ε),

i.e.

π̃(τ, τ ′) :=
[
σrh(f̃ ,J )− σrh(f̃ ,J ′)

]+
.

Recall that since w,w′ are interacting at time iε, then J = K, J ′ = K′ in (6.1). We can now study the
change of the l.h.s. of (6.21), due to transversal interaction. This is done in the next lemma.
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Lemma 6.8. It holds∫∫
JLm×JRm

[
− qk((i− 1)ε, τ, τ ′) + q̃k(τ, τ ′)

]
dτdτ ′ ≤ O(1)Atrans(iε,mε)L1(Jm)

≤ O(1)Tot.Var.(u(0))Atrans(iε,mε).

Proof. We first prove that for any (τ, τ ′) ∈ JLm × JRm,

(6.22)
∣∣π((i− 1)ε, τ, τ ′)− π̃(τ, τ ′)

∣∣ ≤ O(1)Atrans(iε,mε).

As in (6.16), choose feff
k ((i− 1)ε) such that

dfeff
k ((i− 1)ε)

dτ

(
inf JLm

)
=
df̃ ′k
dτ

(
inf JLm

)
.

For any ς̄ ∈ Jm, it holds∣∣∣∣dfeff
k ((i− 1)ε)

dτ
(ς̄)− df̃

dτ
(ς̄)

∣∣∣∣ ≤ ∫ ς̄

0

∣∣∣∣d2feff
k ((i− 1)ε)

dτ2
(ς)− d2f̃

dτ2
(ς)

∣∣∣∣dς
≤
∥∥∥∥d2feff

k ((i− 1)ε)

dτ2
− d2f̃

dτ2

∥∥∥∥
L1(Jm)(

by Lemma 3.10 and since
d2feff

k ((i− 1)ε)

dτ2
=
d2(f ′k ∪ f ′′k )

dτ2
a.e. on Jm

)
≤ O(1)Atrans(iε,mε).

(6.23)

For (τ, τ ′) ∈ JLm×JRm, set w := Φk((i−1)ε)−1(τ), w′ := Φk((i−1)ε)−1(τ ′); let J ,J ′ ∈ P((i−1)ε, w,w′),
w ∈ J , w′ ∈ J ′ be the element of the partition containing w,w′ respectively; since

tint((i− 1)ε, w,w′)− ε = (i− 1)ε,

using (6.1) we have

πk((i− 1)ε, τ, τ ′) =
[
σrh(feff

k ((i− 1)ε),J )− σrh(feff
k ((i− 1)ε),J ′)

]+
.

Hence∣∣πk((i− 1)ε, τ, τ ′)− πk(τ, τ ′)
∣∣

=

∣∣∣∣[σrh(feff
k ((i− 1)ε),J )− σrh(feff

k ((i− 1)ε),J ′)
]+
−
[
σrh(f̃ ,J )− σrh(f̃ ,J ′)

]+∣∣∣∣
≤
∣∣∣σrh(feff

k ((i− 1)ε),J )− σrh(f̃ ,J )
∣∣∣+
∣∣∣σrh(feff

k ((i− 1)ε),J ′)− σrh(f̃ ,J ′)
∣∣∣

≤
∥∥∥∥dfeff

k ((i− 1)ε)

dτ
− df̃

dτ

∥∥∥∥
L∞(Jm)

(by (6.23)) ≤ O(1)Atrans(iε,mε),

thus proving (6.22).
As an immediate consequence, we have that for any (τ, τ ′) ∈ JLm × JRm, it holds∣∣∣q̃k(τ, τ ′)− qk((i− 1)ε, τ, τ ′)

∣∣∣ ≤ O(1)
1

τ ′ − τ
Atrans(iε,mε).

We thus have as in the proof of Theorem 6.5∫∫
JLm×JRm

[
− qk((i− 1)ε, τ, τ ′) + q̃(τ, τ ′)

]
dτdτ ′ ≤ O(1)Atrans(iε,mε)

∫∫
JLm×JRm

1

τ ′ − τ
dτdτ ′

≤ O(1)Atrans(iε,mε)L1(Jm),

thus concluding the proof of the lemma, because L1(Jm) ≤ O(1)Tot.Var.(u(0)) by (2.11). �

Now, to conclude the proof of Theorem 6.7 it is sufficient to prove the following proposition.



QUADRATIC INTERACTION FUNCTIONAL FOR GENERAL SYSTEMS OF CONSERVATION LAWS 53

Proposition 6.9. It holds ∫∫
JLm×JRm

q̃k(τ, τ ′)dτdτ ′ ≥ A
quadr
k (iε,mε).

Proof. Set
τM := supJLm = inf JRm,

and

τL := max
{
τ ∈ JLm

∣∣ conv
JLm

f̃(τ) = conv
JLm∪JRm

f̃(τ)
}
,

τR := min
{
τ ∈ JRm

∣∣ conv
JRm

f̃(τ) = conv
JLm∪JRm

f̃(τ)
}
.

W.l.o.g. we assume that τL < τM < τR, otherwise there is nothing to prove.
It is quite easy to see that

Aquadr(iε,mε) = f̃(τM )− conv
[inf JLm,sup JRm]

f̃

= f̃(τM )− conv
[τL,τR]

f̃

=
1

τR − τL

[(
f̃(τM )− f̃(τL)

τM − τL
− f̃(τR)− f̃(τM )

τR − τM

)(
τM − τL

)(
τR − τM

)]
=

1

τR − τL

[
σrh
(
f̃ , (τL, τM ]

)
− σrh

(
f̃ , (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
.

It is thus sufficient to prove that

1

τR − τL

[
σrh
(
f̃ , (τL, τM ]

)
− σrh

(
f̃ , (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
≤
∫ τM

τL

∫ τR

τM

q̃k(τ, τ ′)dτdτ ′.(6.24)

Observe that, by Proposition 5.12,

d((i− 1)ε, τ, τ ′) ≤ τR − τL;

hence (6.24) will follow if we prove that

(6.25)
[
σrh
(
f̃ , (τL, τM ]

)
− σrh

(
f̃ , (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)
≤
∫ τM

τL

∫ τR

τM

π̃(τ, τ ′)dτdτ ′.

Let
L := Φk((i− 1)ε)−1

(
(τL, τM ]

)
, R := Φk((i− 1)ε)−1

(
(τM , τR]

)
.

We will identify waves through the equivalence relation ./ introduced in (5.1): for any couple of waves
w,w′ ∈ J ∪R, set w ./ w′ if and only if

tcr(w) = tcr(w′) and x(t, w) = x(t, w′) for any t ∈
[
tcr(w), iε

)
.

As observed in Lemma 5.2, the sets

L̂ := L
/
./, R̂ := R

/
./

are finite and totally ordered by the order ≤ on W+
k ((i− 1)ε). Moreover for any ξ ∈ L̂, ξ′ ∈ R̂, let w ∈ ξ,

w′ ∈ ξ′ and set

I((i− 1)ε, ξ, ξ′) := I((i− 1)ε, w,w′), P((i− 1)ε, ξ, ξ′) := P((i− 1)ε, w,w′),

and
Î((i− 1)ε, ξ, ξ′) := I((i− 1)ε, ξ, ξ′)

/
./ .

The above definitions are well posed thanks to Lemma 5.10 and Lemma 5.8, Point (2). It is moreover

quite easy to see that Î ⊆ L̂ ∪ R̂.

Now we partition the rectangle L̂× R̂ in sub-rectangles, as follows. For any rectangle Ĉ := L̂C ×R̂C ⊆
L̂ × R̂, define (see Figure 7)

Π0(Ĉ) :=

{
∅, Ĉ = ∅,[
L̂C ∩ Î((i− 1)ε,max L̂C ,min R̂C)

]
×
[
R̂C ∩ Î((i− 1)ε,max L̂C ,min R̂C)

]
, Ĉ 6= ∅,
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L̂

L̂C

R̂
R̂C

Π0(Ĉ)

Π1(Ĉ)Π2(Ĉ)

Π3(Ĉ)

Figure 7. Partition of Ĉ := L̂C × R̂C .

Π1(Ĉ) :=

{
∅, Ĉ = ∅,[
L̂C ∩ Î((i− 1)ε,max L̂C ,min R̂C)

]
×
[
R̂C \ Î((i− 1)ε,max L̂C ,min R̂C)

]
, Ĉ 6= ∅,

Π2(Ĉ) :=

{
∅, Ĉ = ∅,[
L̂C \ Î((i− 1)ε,max L̂C ,min R̂C)

]
×
[
R̂C \ Î((i− 1)ε,max L̂C ,min R̂C)

]
, Ĉ 6= ∅,

Π3(Ĉ) :=

{
∅, Ĉ = ∅,[
L̂C \ Î((i− 1)ε,max L̂C ,min R̂C)

]
×
[
R̂C ∩ Î((i− 1)ε,max L̂C ,min R̂C)

]
, Ĉ 6= ∅,

Clearly
{

Π0(Ĉ),Π1(Ĉ),Π2(Ĉ),Π3(Ĉ)
}

is a disjoint partition of Ĉ.
For any set A, denote by A<N the set of all finite sequences taking values in A. We assume that

∅ ∈ A<N, called the empty sequence. There is a natural ordering E on A<N: given α, β ∈ A<N,

αE β ⇐⇒ β is obtained from α by adding a finite sequence.

A subset D ⊆ A<N is called a tree if for any α, β ∈ A<N, αE β, if β ∈ D, then α ∈ D.

Define a map Ψ̂ : {0, 1, 2, 3}<N −→ 2L̂×R̂, by setting

Ψ̂α =

{
L̂ × R̂, if α = ∅,
Πan ◦ · · · ◦Πa1(L̂ × R̂), if α = (a1, . . . , an) ∈ {0, 1, 2, 3}<N \ {∅}.

For α ∈ {0, 1, 2, 3}<N, let L̂α, R̂α be defined by the relation Ψ̂α = L̂α×R̂α. Define a treeD in {0, 1, 2, 3}<N

setting

D :=
{
∅
}
∪
{
α = (a1, . . . , an) ∈ {0, 1, 2, 3}<N

∣∣∣ n ∈ N, Π̂α 6= ∅, ak 6= 0 for k = 1, . . . , n− 1

}
.

See Figure 8.

Since Π0(Π0(Ĉ)) = Π0(Ĉ) for any Ĉ ⊆ L̂ × R̂, this implies, together with the fact that L̂ × R̂ is a finite
set, that D is a finite tree.
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L̂

R̂

Π̂0

Π̂10

Π̂11Π̂12

Π̂13Π̂20

Π̂21Π̂22

Π̂23

Π̂30

Π̂31

Figure 8. Partition of L ×R using the tree D.

For any α ∈ D, set

Lα :=
⋃
ξ∈L̂α

ξ, Rα :=
⋃

ξ′∈R̂α

ξ′,

Lα := Φk((i− 1)ε)(Lα), Rα := Φk((i− 1)ε)(Rα).

The idea of the proof is to show that, for each α ∈ D, on the rectangle Lα ×Rα it holds[
σrh(f̃ , Lα)− σrh(f̃ , Rα)

]
L2(Lα ×Rα) ≤

∫
Lα×Rα

π̃(τ, τ ′)dτdτ ′.(6.26)

The conclusion will follow just considering that ∅ ∈ D and L∅ = (τL, τM ], R∅ = (τM , τR].
We now need the following two Lemmas.

Lemma 6.10. For any β ∈ D, the partition P((i − 1)ε,max L̂β ,min R̂β) of the characteristic interval

I((i− 1)ε,max L̂β ,min R̂β) can be restricted to

Lβ ∩ I((i− 1)ε,max L̂β ,min R̂β)

and to

Rβ ∩ I((i− 1)ε,max L̂β ,min R̂β).

Proof. Let us prove only the first part of the statement, the second one being completely similar. We
will show by induction the following stronger claim:

for each γ E β, the partition P((i− 1)ε,max L̂β ,min R̂β) of the interval I((i− 1)ε,max L̂β ,min R̂β) can

be restricted to Lγ ∩ I((i− 1)ε,max L̂β ,min R̂β).

For γ = ∅, by definition L∅ = L and thus the proof is an easy consequence of Proposition 5.12. Thus
assume the claim is true for some γ C β and let us prove it for γa, with a ∈ {0, 1, 2, 3}.

If a = 0, 1, by definition it holds

Lγa = Lγ ∩ I((i− 1)ε,max L̂γ ,min R̂γ).

Hence

Lγa ∩ I((i− 1)ε,max L̂β ,min R̂β) = Lγ ∩ I((i− 1)ε,max L̂γ ,min R̂γ) ∩ I((i− 1)ε,max L̂β ,min R̂β).
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By inductive assumption, the partition P((i − 1)ε,max L̂β ,min R̂β) of I((i − 1)ε,max L̂β ,min R̂β) can

be restricted to Lγ ∩ I((i− 1)ε,max L̂β ,min R̂β), while, since γ C β,

max L̂β ≤ max L̂γ ≤ min R̂γ ≤ min R̂β

and therefore, by Proposition 5.14, the partition P((i − 1)ε,max L̂β ,min R̂β) can be restricted also to

I((i− 1)ε,max L̂γ ,min R̂γ) ∩ I((i− 1)ε,max L̂β ,min R̂β), and thus we are done.
If a = 2, 3, by definition it holds

Lγa = Lγ \ I((i− 1)ε,max L̂γ ,min R̂γ).

Hence

Lγa ∩ I((i− 1)ε,max L̂β ,min R̂β)

=
(
Lγ \ I((i− 1)ε,max L̂γ ,min R̂γ)

)
∩ I((i− 1)ε,max L̂β ,min R̂β)

=
(
Lγ ∩ I((i− 1)ε,max L̂β ,min R̂β)

)
∩
(
I((i− 1)ε,max L̂β ,min R̂β) \ I((i− 1)ε,max L̂γ ,min R̂γ)

)
.

As in the case a = 0, 1, by inductive assumption, the partition P((i − 1)ε,max L̂β ,min R̂β) of the

interval I((i − 1)ε,max L̂β ,min R̂β) can be restricted to Lγ ∩ I((i − 1)ε,max L̂β ,min R̂β), while, as

before, by Proposition 5.14 using γ C β, it can be restricted also to I((i− 1)ε,max L̂β ,min R̂β) \ I((i−
1)ε,max L̂γ ,min R̂β), and thus we are done also in this case. �

Lemma 6.11. For each α = (a1, . . . an) ∈ D, if an = 0, then it holds[
σrh(f̃ , Lα)− σrh(f̃ , Rα)

]
L2(Lα ×Rα) ≤

∫∫
Lα×Rα

π̃(τ, τ ′)dτdτ ′.

Proof. Set β := (a1, . . . , an−1). Since an = 0, then

Ψ̂α = Π0(Ψ̂β) =
(
L̂β ∩ Î((i− 1)ε,max L̂β ,min R̂β)

)
×
(
R̂β ∩ Î((i− 1)ε,max L̂β ,min R̂β)

)
,

and thus

Lα = Lβ ∩ I((i− 1)ε,max L̂β ,min R̂β), Rα = Rβ ∩ I((i− 1)ε,max L̂β ,min R̂β).

Consider the partition P((i− 1)ε,max L̂β ,min R̂β) of the interval I((i− 1)ε,max L̂β ,min R̂β) and set

P :=
{

Φk((i− 1)ε)(J )
∣∣ J ∈ P((i− 1)ε,max L̂β ,min R̂β)

}
.

By definition of the partition in Section 5.3, the elements of P are intervals in R, possibly singletons.
Clearly the non-singleton intervals in P are at most countable; moreover by Lemma 6.10, the partition

P((i − 1)ε,max L̂β ,min R̂β) can be restricted both to Lα and to Rα; hence, denoting by {Ur}r∈N the
non-singleton elements of P contained in Lα and by {Vr′}r′∈N the non-singleton elements of P contained
in Rα, we can write Lα, Rα as

Lα = Φk((i− 1)ε)(Lα) =

( ⋃
r∈N

Ur

)
∪
(
Lα \

⋃
r∈N

Ur

)
,

Rα = Φk((i− 1)ε)(Rα) =

( ⋃
r′∈N

Vr′

)
∪
(
Rα \

⋃
r′∈N

Vr′

)
;

set also, for shortness:

U :=
⋃
r∈N

Ur, V :=
⋃
r′∈N

Vr′ .

Now observe that for (τ, τ ′) ∈ Lα ×Rα, setting

w := Φk((i− 1)ε)−1(τ), w′ := Φk((i− 1)ε)−1(τ ′),
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it holds:

(6.27) π̃(τ, τ ′) =



[
σrh(f̃ , Ur)− σrh(f̃ , Vr′)

]+
if τ ∈ Ur, and τ ′ ∈ Vr′ ,[

σrh(f̃ , Ur)−
df̃

dτ
(τ ′)

]+

if τ ∈ Ur, and τ ′ ∈ Rα \ V,[
df̃

dτ
(τ)− σrh(f̃ , Vr′)

]+

if τ ∈ Lα \ U, and τ ′ ∈ Vr′ ,[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]+

if τ ∈ Lα \ U, and τ ′ ∈ Rα \ V.

Indeed, if max L̂β ,min R̂β have never interacted at time (i − 1)ε, then by Proposition 5.15, Point (3),
w,w′ have never interacted at time (i− 1)ε and thus

π̃(τ, τ ′) =

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]+

(by (6.3) and the fact that K,K′ in (6.2) are singletons). In particular (6.27) holds.

On the other hand, if max L̂β ,min R̂β have already interacted at time (i− 1)ε, distinguish two cases:

(1) if tcr(w), tcr(w′) ≤ tsplit((i − 1)ε,max L̂β ,min R̂β), then by Proposition 5.15, Point (1), w,w′

have already interacted at time (i− 1)ε and

I((i− 1)ε,max L̂β ,min R̂β) = I((i− 1)ε, w,w′), P((i− 1)ε,max L̂β ,min R̂β) = P((i− 1)ε, w,w′),

which implies (6.27) (remember that

tsplit
(
(i− 1)ε, w,w′

)
= tsplit

(
(i− 1)ε,max L̂β ,min R̂β

)
,

since the intervals are not further partitioned by Π0);

(2) if one or both among w,w′ is created after tsplit((i− 1)ε,max L̂β ,min R̂β), then, by Proposition
5.15, Point (2), w,w′ have never interacted at time (i− 1)ε and thus

π̃(τ, τ ′) =

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]+

(by (6.3) and the fact that K,K′ in (6.2) are singletons). In particular (6.27) holds also in this
case.
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We are now able to conclude the proof of the lemma as follows:

[
σrh(f̃ , Lα)− σrh(f̃ , Rα)

]
L2(Lα ×Rα)

=

∫∫
Lα×Rα

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

=
∑
r,r′∈N

∫∫
Ur×Vr′

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′ +

∑
r∈N

∫∫
Ur×(Rα\V )

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

+
∑
r′∈N

∫∫
(Lα\U)×Vr′

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′ +

∫∫
(Lα\U)×(Rα\V )

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

=
∑
r,r′∈N

L2(Ur × Vr′)
[
σrh(f̃ , Ur)− σrh(f̃ , Vr′)

]
+
∑
r∈N
L1(Ur)

∫
Rα\V

[
σrh(f̃ , Ur)−

df̃

dτ
(τ ′)

]
dτ ′

+
∑
r′∈N
L1(Vr′)

∫
Lα\U

[
df̃

dτ
(τ)− σrh(f̃ , Vr′)

]
dτ +

∫∫
(Lα\U)×(Rα\V )

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

≤
∑
r,r′∈N

L2(Ur × Vr′)
[
σrh(f̃ , Ur)− σrh(f̃ , Vr′)

]+
+
∑
r∈N
L1(Ur)

∫
Rα\V

[
σrh(f̃ , Ur)−

df̃

dτ
(τ ′)

]+

dτ ′

+
∑
r′∈N
L1(Vr′)

∫
Lα\U

[
df̃

dτ
(τ)− σrh(f̃ , Vr′)

]+

dτ +

∫∫
(Lα\U)×(Rα\V )

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]+

dτdτ ′

(6.27)

≤
∑
r,r′∈N

∫∫
Ur×Vr′

π̃(τ, τ ′)dτdτ ′ +
∑
r∈N

∫∫
Ur×(Rα\V )

π̃(τ, τ ′)dτdτ ′

+
∑
r′∈N

∫∫
(Lα\U)×Vr′

π̃(τ, τ ′)dτdτ ′ +

∫∫
(Lα\U)×(Rα\V )

π̃(τ, τ ′)dτdτ ′

=

∫∫
Lα×Rα

π̃(τ, τ ′)dτdτ ′,

which is what we wanted to prove. �

Conclusion of the proof of Proposition 6.9. In the previous lemma we proved inequality (6.26) for
the elements α ∈ D of the tree whose last component is equal to 0. Now we use this fact to prove (6.26)
for any α ∈ D. We proceed by (inverse) induction on the tree.

If α is a leaf of the tree, then, by definition, the last component of α is equal to zero, and thus Lemma
6.11 applies.

If α is not a leaf, then

Ψ̂α = Ψ̂α0 ∪ Ψ̂α1 ∪ Ψ̂α2 ∪ Ψ̂α3

and thus

Lα ×Rα =
(
Lα0 ×Rα0

)
∪
(
Lα1 ×Rα1

)
∪
(
Lα2 ×Rα2

)
∪
(
Lα3 ×Rα3

)
.
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The estimate (6.26) holds on Lα0 × Rα0 by Lemma 6.11, while it holds on Lαa × Rαa, a = 1, 2, 3, by
inductive assumption. Hence we can write[

σrh(f̃ , Lα)− σrh(f̃ , Rα)
]
L2(Lα ×Rα) =

∫∫
Lα×Rα

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

=

3∑
a=0

∫∫
Lαa×Rαa

[
df̃

dτ
(τ)− df̃

dτ
(τ ′)

]
dτdτ ′

=

3∑
a=0

[
σrh(f̃ , Lαa)− σrh(f̃ , Rαa)

]
L2(Lαa ×Rαa)

≤
3∑
a=0

∫∫
Lαa×Rαa

π̃(τ, τ ′)dτdτ ′

=

∫∫
Lαa×Rαa

π̃(τ, τ ′)dτdτ ′.

As already observed, for α = ∅, we get inequality (6.25), thus concluding the proof of the proposition. �

We can finally use Lemma 6.8 and Proposition 6.9 to prove Theorem 6.7.

Proof of Theorem 6.7. It holds

−
∑
m∈Z

∫∫
JLm×JRm

qk((i− 1)ε)dτdτ ′

≤
∑
m∈Z

∫∫
JLm×JRm

[
− qk((i− 1)ε) + q̃k(τ, τ ′)

]
dτdτ ′ −

∑
m∈Z

∫∫
JLm×JRm

q̃k(τ, τ ′)dτdτ ′

≤ O(1)
∑
m∈Z

Atrans(iε,mε)L1(Jm)−
∑
m∈Z

∫∫
JLm×JRm

q̃k(τ, τ ′)dτdτ ′

≤ −
∑
m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0))

∑
m∈Z

Atrans(iε,mε)

≤ −
∑
m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0))

∑
m∈Z

A(iε,mε). �



60 STEFANO BIANCHINI AND STEFANO MODENA

Appendix A. Real analysis results

In this section collect some results about convex envelopes of continuous functions and slopes of secant
lines; these results are frequently used in the paper. The statements related to convex envelopes are
already proven in [4], [6], [7], with some minimal variations, while the results regarding the slopes of the
secant lines will be explicitly proved.

A.1. Convex envelopes. We recall here the notion of convex envelope of a continuous function g : R→
R and we state some results about convex envelops.

Definition A.1. Let g : R→ R be continuous and [a, b] ⊆ R. We define the convex envelope of g in the
interval [a, b] as

conv
[a,b]

g(u) := sup

{
h(u)

∣∣∣ h : [a, b]→ R is convex and h ≤ g
}
.

A similar definition holds for the concave envelope of g in the interval [a, b] denoted by conc
[a,b]

g. All

the results we present here for the convex envelope of a continuous function g hold, with the necessary
changes, for its concave envelope.

Lemma A.2. In the same setting of Definition A.1, conv
[a,b]

g is a convex function and conv
[a,b]

g(u) ≤ g(u)

for each u ∈ [a, b].

The proof is straightforward.
The following theorem is classical and provides a description of the regularity of the convex envelope

of a given function g. For a self contained proof (of a bit less general result), see Theorem 2.5 of [6].

Theorem A.3. Let g : [a, b]→ R be a Lipschitz function. Then:

(1) the convex envelope conv
[a,b]

g of g in the interval [a, b] is Lipschitz on [a, b] and

Lip
(

conv
[a,b]

g
)
≤ Lip(g);

(2) if g ∈ C1([a, b]), then conv
[a,b]

g ∈ C1([a, b]) and, for any point u ∈ (a, b) such that g(u) = conv
[a,b]

g(u),

it holds
d

du
g(u) =

d

du
conv
[a,b]

g(u);

(3) if g ∈ C1,1([a, b]), then conv
[a.b]

g ∈ C1,1([a, b]) and

Lip

(
d

du
conv
[a,b]

g

)
≤ Lip

(
dg

du

)
.

By ”C1([a, b])” we mean that conv
[a,b]

g is C1 on (a, b) in the classical sense and that in a (resp. b) the

right (resp. the left) derivative exists.
We now state some useful results about convex envelopes, which we frequently use in the paper.

Proposition A.4. Let g : R→ R be C1 and a < ū < b. Then

(1) for each u1, u2 ∈ [a, ū], u1 < u2,(
d

du
conv
[a,ū]

g

)
(u2)−

(
d

du
conv
[a,ū]

g

)
(u1) ≥

(
d

du
conv
[a,b]

g

)
(u2)−

(
d

du
conv
[a,b]

g

)
(u1);

(2) for each u1, u2 ∈ [ū, b], u1 < u2,(
d

du
conv
[ū,b]

g

)
(u2)−

(
d

du
conv
[ū,b]

g
)

(u1) ≥
(
d

du
conv
[a,b]

g

)
(u2)−

(
d

du
conv
[a,b]

g

)
(u1),

where the derivative in the endpoints of the intervals are in the sense of right/left derivative.

Proof. See Proposition 2.10 of [6]. �
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Proposition A.5. Let g be a C1,1 function, let a < ū < b. Then(
d

du
conv
[a,ū]

g

)
(ū−)−

(
d

du
conv
[a,b]

g

)
(ū) ≤ Lip(g′)(b− ū).

Proof. See Proposition 2.15 of [6]. �

Proposition A.6. Let g, h : R −→ R be C1 functions. Let a, b ∈ R, a < b. Then it holds∥∥∥∥ ddu conv
[a,b]

g − d

du
conv
[a,b]

h

∥∥∥∥
∞
≤
∥∥∥∥dgdu − dh

du

∥∥∥∥
∞
,

∥∥∥∥d conv[a,b] g

dτ
−
d conv[a,b] h

dτ

∥∥∥∥
1

≤
∥∥∥∥dgdτ − dh

dτ

∥∥∥∥
1

.

Proof. For the first estimate see Proposition 2.12 of [7], while for the second one see Lemma 3.1 of [4]. �

A.2. Slopes of secant lines. We now state two results related to the slope of the secant line of a function
g between two given points a ≤ b. Their proofs are easy exercises. Using the language of Hyperbolic
Conservation Laws, we will call this slope the Rankine-Hugoniot speed given by the map g to the interval
[a, b].

Proposition A.7. Let g : R→ R be a C1,1 function and let a ∈ R. Then the map

x 7→


g(x)− g(a)

x− a
, if x 6= 0,

g′(a), if x = 0

is Lipschitz on R, with Lipschitz constant equal to Lip(g′).

Proposition A.8. Let g : R→ R be a C1,1 function, let [a, b] ⊆ R, ū ∈ [a, b] such that conv
[a,b]

g(ū) = g(ū).

Then for any u ∈ [a, b],

• if u ∈ [a, ū], then
σrh(g, [u, ū]) ≤ σrh(g, [u, b]);

• if u ∈ [ū, b], then
σrh(g, [ū, u]) ≥ σrh(g, [a, u]).
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