973 research outputs found

    Global symmetries of Yang-Mills squared in various dimensions

    Get PDF
    Tensoring two on-shell super Yang-Mills multiplets in dimensions D≀10D\leq 10 yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) D\mathbb{D} with each dimension 3≀D≀103\leq D\leq 10 we obtain formulae for the algebras g\mathfrak{g} and h\mathfrak{h} of the U-duality group GG and its maximal compact subgroup HH, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.Comment: 25 pages, 2 figures, references added, minor typos corrected, further comments on sec. 2.4 included, updated to match version to appear in JHE

    An octonionic formulation of the M-theory algebra

    Full text link
    We give an octonionic formulation of the N = 1 supersymmetry algebra in D = 11, including all brane charges. We write this in terms of a novel outer product, which takes a pair of elements of the division algebra A and returns a real linear operator on A. More generally, with this product comes the power to rewrite any linear operation on R^n (n = 1,2,4,8) in terms of multiplication in the n-dimensional division algebra A. Finally, we consider the reinterpretation of the D = 11 supersymmetry algebra as an octonionic algebra in D = 4 and the truncation to division subalgebras

    Cross-Order Relations in N=4 Supersymmetric Gauge Theories

    Full text link
    The anti-de Sitter/conformal field theory duality conjecture raises the question of how the perturbative expansion in the conformal field theory can resum to a simple function. We exhibit a relation between the one-loop and two-loop amplitudes whose generalization to higher-point and higher-loop amplitudes would answer this question. We also provide evidence for the first of these generalizations.Comment: 6 pages, talk given at the 3rd International Symposium on Quantum Theory and Symmetries, Cincinnati, OH, Sept 10-14, 2003; v2: Mispositioned figure in eqn. 1 fixe

    A magic pyramid of supergravities

    Get PDF
    By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3) x Sp(1).Comment: 30 pages, 6 figures. Updated to match published version. References and comments adde

    Super Yang-Mills, division algebras and triality

    Full text link
    We give a unified division algebraic description of (D=3, N=1,2,4,8), (D=4, N=1,2,4), (D=6, N=1,2) and (D=10, N=1) super Yang-Mills theories. A given (D=n+2, N) theory is completely specified by selecting a pair (A_n, A_{nN}) of division algebras, A_n, A_{nN} = R, C, H, O, where the subscripts denote the dimension of the algebras. We present a master Lagrangian, defined over A_{nN}-valued fields, which encapsulates all cases. Each possibility is obtained from the unique (O, O) (D=10, N=1) theory by a combination of Cayley-Dickson halving, which amounts to dimensional reduction, and removing points, lines and quadrangles of the Fano plane, which amounts to consistent truncation. The so-called triality algebras associated with the division algebras allow for a novel formula for the overall (spacetime plus internal) symmetries of the on-shell degrees of freedom of the theories. We use imaginary A_{nN}-valued auxiliary fields to close the non-maximal supersymmetry algebra off-shell. The failure to close for maximally supersymmetric theories is attributed directly to the non-associativity of the octonions.Comment: 24 pages, 2 figures. Updated to match published version. References adde

    Higgs Production at NNLO

    Get PDF
    We describe the calculation of inclusive Higgs boson production at hadronic colliders at next-to-next-to-leading order (NNLO) in perturbative quantum chromodynamics. We have used the technique developed in reference [4]. Our results agree with those published earlier in the literature.Comment: Talk given at PASCOS'03, TIFR, Mumbai, LaTeX, 5 page

    Two-loop corrections to gg→γγgg \to \gamma \gamma

    Full text link
    An overview of the calculation of the two-loop helicity amplitudes for scattering of two gluons into two photons is presented. These matrix elements enter into the recent improved calculation of the QCD background to Higgs boson decay into a pair of photons, which is the preferred search mode at the LHC for the case of a light Higgs boson.Comment: Presented at RADCOR 2002/Loops and Legs in Quantum Field Theory (September 2002, Kloster Banz, Germany

    Efficiently evaluating loop integrals in the EFTofLSS using QFT integrals with massive propagators

    Full text link
    We develop a new way to analytically calculate loop integrals in the Effective Field Theory of Large Scale-Structure. Previous available methods show severe limitations beyond the one-loop power spectrum due to analytical challenges and computational and memory costs. Our new method is based on fitting the linear power spectrum with cosmology-independent functions that resemble integer powers of quantum field theory massive propagators with complex masses. A remarkable small number of them is sufficient to reach enough accuracy. Similarly to former approaches, the cosmology dependence is encoded in the coordinate vector of the expansion of the linear power spectrum in our basis. We first produce cosmology-independent tensors where each entry is the loop integral evaluated on a given combination of basis vectors. For each cosmology, the evaluation of a loop integral amounts to contracting this tensor with the coordinate vector of the linear power spectrum. The 3-dimensional loop integrals for our basis functions can be evaluated using techniques familiar to particle physics, such as recursion relations and Feynman parametrization. We apply our formalism to evaluate the one-loop bispectrum of galaxies in redshift space. The final analytical expressions are quite simple and can be evaluated with little computational and memory cost. We show that the same expressions resolve the integration of all one-loop NN-point function in the EFTofLSS. This method, which is originally presented here, has already been applied in the first one-loop bispectrum analysis of the BOSS data to constraint Λ\LambdaCDM parameters and primordial non-Gaussianities, see arXiv:2206.08327 and arXiv:2201.11518.Comment: 69 + 27 pages, 27 figures v2: corrected plot and typo
    • 

    corecore