1,297 research outputs found
Genetic programs controlling cortical interneuron fate.
The origins of cortical interneurons in rodents have been localized to the embryonic subcortical telencephalon where distinct neuroepithelial precursors generate defined interneuron subsets. A swathe of research activity aimed at identifying molecular determinants of subtype identity has uncovered a number of transcription factors that function at different stages of interneuron development. Pathways that lead to the acquisition of mature interneuron traits are therefore beginning to emerge. As genetic programs are influenced by external factors the search continues not only into genetic determinants but also extrinsic influences and the interplay between the two in cell fate specification
PRINCIPAL STRATIFICATION DESIGNS TO ESTIMATE INPUT DATA MISSING DUE TO DEATH
We consider studies of cohorts of individuals after a critical event, such as an injury, with the following characteristics. First, the studies are designed to measure “input” variables, which describe the period before the critical event, and to characterize the distribution of the input variables in the cohort. Second, the studies are designed to measure “output” variables, primarily mortality after the critical event, and to characterize the predictive (conditional) distribution of mortality given the input variables in the cohort. Such studies often possess the complication that the input data are missing for those who die shortly after the critical event because the data collection takes place after the event. Standard methods of dealing with the missing inputs, such as imputation or weighting methods based on an assumption of ignorable missingness, are known to be generally invalid when the missingness of inputs is nonignorable, that is, when the distribution of the inputs is different between those who die and those who live. To address this issue, we propose a novel design that obtains and uses information on an additional key variable – a treatment or externally controlled variable, which if set at its “effective” level, could have prevented the death of those who died. We show that the new design can be used to draw valid inferences for the marginal distribution of inputs in the entire cohort, and for the conditional distribution of mortality given the inputs, also in the entire cohort, even under nonignorable missingness. The crucial framework that we use is principal stratification based on the potential outcomes, here mortality under both levels of treatment. We also show using illustrative preliminary injury data, that our approach can reveal results that are more reasonable than the results of standard methods, in relatively dramatic ways. Thus, our approach suggests that the routine collection of data on variables that could be used as possible treatments in such studies of inputs and mortality should become common
A Bound on the Light Emitted During the TP-AGB Phase
The integrated luminosity of the TP-AGB phase is a major uncertainty in
stellar population synthesis models. We use the white dwarf initial final mass
relation and stellar interiors models to demonstrate that a significant
fraction of the core mass growth for intermediate (1.5 < Msun < 6) mass stars
takes place during the TP-AGB phase. We find evidence that the peak fractional
core mass contribution for TP-AGB stars is ~20% and occurs for stars between 2
Msun and 3.5 Msun. Using a simple fuel consumption argument we couple this core
mass increase to a lower limit on the TP-AGB phase energy output. Roughly half
of the energy released in models of TP-AGB stars can be directly accounted for
by this core growth; while the remainder is predominantly the stellar yield of
He. A robust measurement of the emitted light in this phase will therefore set
strong constraints on helium enrichment from TP-AGB stars, and we estimate the
yields predicted by current models as a function of initial mass. Implications
for stellar population studies and prospects for improvements are discussed.Comment: Submitted to the Astrophysical Journal. 25 pages, 2 figures
Recommended from our members
Bidirectional Association Between Depression and Metabolic Syndrome
OBJECTIVE Epidemiological studies have repeatedly investigated the association between depression and metabolic syndrome (MetS). However, the results have been inconsistent. This meta-analysis aimed to summarize the current evidence from cross-sectional and prospective cohort studies that evaluated this association. RESEARCH DESIGN AND METHODS MEDLINE, EMBASE, and PsycINFO databases were searched for articles published up to January 2012. Cross-sectional and cohort studies that reported an association between the two conditions in adults were included. Data on prevalence, incidence, unadjusted or adjusted odds ratio (OR), and 95% CI were extracted or provided by the authors. The pooled OR was calculated separately for cross-sectional and cohort studies using random-effects models. The I2 statistic was used to assess heterogeneity. RESULTS The search yielded 29 cross-sectional studies (n = 155,333): 27 studies reported unadjusted OR with a pooled estimate of 1.42 (95% CI 1.28–1.57; I2 = 55.1%); 11 studies reported adjusted OR with depression as the outcome (1.27 [1.07–1.57]; I2 = 60.9%), and 12 studies reported adjusted OR with MetS as the outcome (1.34 [1.18–1.51]; I2 = 0%). Eleven cohort studies were found (2 studies reported both directions): 9 studies (n = 26,936 with 2,316 new-onset depression case subjects) reported adjusted OR with depression as the outcome (1.49 [1.19–1.87]; I2 = 56.8%), 4 studies (n = 3,834 with 350 MetS case subjects) reported adjusted OR with MetS as the outcome (1.52 [1.20–1.91]; I2 = 0%). CONCLUSIONS Our results indicate a bidirectional association between depression and MetS. These results support early detection and management of depression among patients with MetS and vice versa
On Compound Poisson Processes Arising in Change-Point Type Statistical Models as Limiting Likelihood Ratios
Different change-point type models encountered in statistical inference for
stochastic processes give rise to different limiting likelihood ratio
processes. In a previous paper of one of the authors it was established that
one of these likelihood ratios, which is an exponential functional of a
two-sided Poisson process driven by some parameter, can be approximated (for
sufficiently small values of the parameter) by another one, which is an
exponential functional of a two-sided Brownian motion. In this paper we
consider yet another likelihood ratio, which is the exponent of a two-sided
compound Poisson process driven by some parameter. We establish, that similarly
to the Poisson type one, the compound Poisson type likelihood ratio can be
approximated by the Brownian type one for sufficiently small values of the
parameter. We equally discuss the asymptotics for large values of the parameter
and illustrate the results by numerical simulations
MTG8 interacts with LHX6 to specify cortical interneuron subtype identity
Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones
Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models
A broad range of single field models of inflation are analyzed in light of
all relevant recent cosmological data, checking whether they can lead to the
formation of long-lived Primordial Black Holes (PBHs). To that end we calculate
the spectral index of the power spectrum of primordial perturbations as well as
its first and second derivatives. PBH formation is possible only if the
spectral index increases significantly at small scales, i.e. large wave number
. Since current data indicate that the first derivative of the
spectral index is negative at the pivot scale , PBH formation
is only possible in the presence of a sizable and positive second derivative
("running of the running") . Among the three small-field and five
large-field models we analyze, only one small-field model, the "running mass"
model, allows PBH formation, for a narrow range of parameters. We also note
that none of the models we analyze can accord for a large and negative value of
, which is weakly preferred by current data.Comment: 26 pages, 5 figures, Refs. added, Minor textual change; version to
appear in JCA
MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units
AIM: MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone.
MATERIALS AND METHODS: PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method.
RESULTS: The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, p<10(-6)). Finally, the CAR-RiDR method provides a low whole-brain mean absolute percent-error (MAPE±SD) in PET reconstructions across subjects of 2.55%±0.86. Regional PET errors were also low and ranged from 0.88% to 3.79% in 24 brain ROIs.
CONCLUSION: We propose an MR-based attenuation correction method (CAR-RiDR) for quantitative PET neurological imaging. The proposed method employs UTE and Dixon images and consists of two novel components: 1) accurate segmentation of air and bone using the inverse of the UTE1 image and the R2* image, respectively and 2) estimation of continuous LAC values for bone using a regression between R2* and CT-Hounsfield units. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy
Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility
Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of American Physiological Society for personal use, not for redistribution. The definitive version was published in American
Journal of Physiology-Gastrointestinal and Liver Physiology 310 (2016): G973-G988, doi:10.1152/ajpgi.00017.2016.Gut dysbiosis, host genetics, and environmental triggers are implicated as causative factors in
inflammatory bowel disease (IBD), yet mechanistic insights are lacking. Longitudinal analysis of
ulcerative colitis patients following total colectomy with ileal anal anastomosis (IPAA) where
>50% develop pouchitis, offers a unique setting to examine cause vs. effect. To recapitulate
human IPAA, we employed a mouse model of surgically created blind self-filling (SFL) and self-
emptying (SEL) ileal loops using wild-type (WT), IL-10 KO (IL10), and TLR4 KO (T4), and
IL10/T4 double KO mice. After 5 weeks, loop histology, host gene/protein expression, and
bacterial 16s rRNA profiles were examined. SFL exhibit fecal stasis due to directional motility
oriented towards the loop end, whereas SEL remain empty. In wild type mice, SFL, but not SEL,
develop pouch-like microbial communities without accompanying active inflammation. However,
in genetically susceptible IL-10-/- deficient mice, SFL, but not SEL, exhibit severe inflammation
and mucosal transcriptomes resembling human pouchitis. The inflammation associated with IL-
10-/- required TLR4, as animals lacking both pathways displayed little disease. Furthermore,
germ-free IL10-/- mice conventionalized with SFL, but not SEL, microbiota populations develop
severe colitis. These data support essential roles of stasis-induced, colon-like microbiota, TLR4-
mediated colonic metaplasia, and genetic susceptibility in the development of pouchitis and
possibly UC. However, these factors by themselves are not sufficient. Similarities between this
model and human UC/pouchitis provide opportunities for gaining insights into the mechanistic
basis of IBD and for identification of targets for novel preventative and therapeutic interventions.NIDDK DK42086 (DDRCC), UH3 DK083993, Leona and Harry
Helmsley Trust (SHARE), R37 DK47722, T32 DK07074, F32 DK105728, Gastrointestinal
Research Foundation of Chicago, Peter and Carol Goldman Family Research grant.2017-06-0
- …