34 research outputs found

    Baseline Trachoma Surveys in Kaskazini A and Micheweni Districts of Zanzibar: Results of Two Population-Based Prevalence Surveys Conducted with the Global Trachoma Mapping Project.

    Get PDF
    PURPOSE: Based on health care records and trachoma rapid assessments, trachoma was suspected to be endemic in Kaskazini A and Micheweni districts of Zanzibar. This study aimed to investigate the prevalence of trachomatous inflammation-follicular (TF), and trachomatous trichiasis (TT) in each of those districts. METHODS: The survey was undertaken in Kaskazini A and Micheweni districts on Unguja and Pemba Islands, respectively. A multi-stage cluster random sampling design was applied, whereby 25 census enumeration areas (clusters) and 30 households per cluster were included. Consenting eligible participants (children aged 1-9 years and people aged 15 years and older) were examined for trachoma using the World Health Organization simplified grading system. RESULTS: A total of 1673 households were surveyed and 6407 participants (98.0% of those enumerated) were examined for trachoma. Examinees included a total of 2825 children aged 1-9 years and 3582 people aged 15 years and older. TF prevalence in 1-9-year-olds was 2.7% (95% confidence interval, CI, 2.7-4.1%) in Kazkazini A and 11.4% (95% CI 6.6-16.5%) in Micheweni. Among people aged 15 years and older, TT prevalence was 0.01% (95% CI 0.00-0.04%) in Kazkazini A and 0.21% (95% CI 0.08-0.39%) in Micheweni. CONCLUSION: Trachoma is a public health problem in Micheweni district, where implementation of all four components of the SAFE strategy (surgery, antibiotics, facial cleanliness, and environmental improvement), including mass drug administration with azithromycin, is required. These findings will facilitate planning for trachoma elimination

    Piloting a surveillance system to monitor the global patterns of drug efficacy and the emergence of anthelmintic resistance in soil-transmitted helminth control programs: a Starworms study protocol

    Get PDF
    To eliminate soil-transmitted helminth (STH) infections as a public health problem, the administration of benzimidazole (BZ) drugs to children has recently intensified. But, as drug pressure increases, the development of anthelmintic drug resistance (AR) becomes a major concern. Currently, there is no global surveillance system to monitor drug efficacy and the emergence of AR. Consequently, it is unclear what the current efficacy of the used drugs is and whether AR is already present. The aim of this study is to pilot a global surveillance system to assess anthelmintic drug efficacy and the emergence of AR in STH control programs. For this, we will incorporate drug efficacy trials into national STH control programs of eight countries (Bangladesh, Cambodia, Lao PDR, Vietnam, Ghana, Rwanda, Senegal and a yet to be defined country in the Americas). In each country, one trial will be performed in one program implementation unit to assess the efficacy of BZ drugs against STHs in school-aged children by faecal egg count reduction test. Stool samples will be collected before and after treatment with BZs for Kato-Katz analysis and preserved to purify parasite DNA. The presence and frequency of known single nucleotide polymorphisms (SNPs) in the β-tubulin genes of the different STHs will subsequently be assessed. This study will provide a global pattern of drug efficacy and emergence of AR in STH control programs. The results will provide complementary insights on the validity of known SNPs in the ß-tubulin gene as a marker for AR in human STHs as well as information on the technical and financial resources required to set up a surveillance system. Finally, the collected stool samples will be an important resource to validate different molecular technologies for the detection of AR markers or to identify novel potential molecular markers associated with AR in STH

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic:a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. Funding Bill &amp; Melinda Gates Foundation.<br/

    Early Exposure of Infants to GI Nematodes Induces Th2 Dominant Immune Responses Which Are Unaffected by Periodic Anthelminthic Treatment

    Get PDF
    We have previously shown a reduction in anaemia and wasting malnutrition in infants <3 years old in Pemba Island, Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI) nematodes Ascaris lumbricoides, hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected, and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-γ and IL-10) induced by the worms were evaluated in 666 infants aged 6–24 months using the Whole Blood Assay. Ascaris and hookworm antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by modification of cytokine responses but may be related to eosinophil function

    Like mother, like child : investigating perinatal and maternal health stress in post-medieval London.

    Get PDF
    Post-Medieval London (sixteenth-nineteenth centuries) was a stressful environment for the poor. Overcrowded and squalid housing, physically demanding and risky working conditions, air and water pollution, inadequate diet and exposure to infectious diseases created high levels of morbidity and low life expectancy. All of these factors pressed with particular severity on the lowest members of the social strata, with burgeoning disparities in health between the richest and poorest. Foetal, perinatal and infant skeletal remains provide the most sensitive source of bioarchaeological information regarding past population health and in particular maternal well-being. This chapter examined the evidence for chronic growth and health disruption in 136 foetal, perinatal and infant skeletons from four low-status cemetery samples in post-medieval London. The aim of this study was to consider the impact of poverty on the maternal-infant nexus, through an analysis of evidence of growth disruption and pathological lesions. The results highlight the dire consequences of poverty in London during this period from the very earliest moments of life

    Protein content study revealed presence of isoform 2 of beta-tropomyosin in primary breast cancer tissues from Sudanese patients

    No full text
    No Abstract. Sudan Journal of Medical Sciences Vol. 2 (3) 2007: pp. 183-18

    Quantification of total phenols, flavonoides and tannins from Ziziphus jujuba (mill.) and Ziziphus lotus (l.) (Desf). Leaf extracts and their effects on antioxidant and antibacterial activities

    No full text
    This work was performed to determine the biochemical composition, antioxidant and antimicrobial activities of leaf extracts collected from four different provenances: Mahdia and Mahres (Ziziphus jujuba); Kairouan and Rouhia (Ziziphus lotus). Total phenols, flavonoids, tannins contents and antioxidant activity were evaluated using the Folin ciocalteux, Aluminum trichloride, vanillin and scavenging activity on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals methods, respectively. The antimicrobial activity was evaluated against three bacterial strains (Escherichia coli, Staphylococcus aureus and klebsiella pneumoniea) and three fungal strains (Fusarium culmorum, Fusarium solani and Botrytis cinerea), according to well Agar diffusion method. Total phenols and flavonoids were present at levels of 21.98 mg GAE /g DW and 7.80 mg ER/g DW; respectively in Ziziphus lotus. These levels did not exceeded 13.70 mg GAE /g DW and 6.73 mg ER/g DW for Ziziphus jujuba. The tannin contents were present in equal levels (7.9 mg EC/g DW) in two species. The high antioxidant activity (0.01 µg/ml) was noted in Rouhia provenance. The Ziziphus lotus leaf extracts showed promising efficiency against all tested microorganisms with a zone of inhibition ranging between 22 and 23.5 mm. This study could validate the medicinal potential of Ziziphus specie and explain why tunisian people traditionally use it in medicine to treat several pathologies. Ziziphus leaf extracts may be suggested in foods and pharmaceutical industries. Leaf extracts proved also to be effective against tested microorganisms. So, an adequate toxicological study must be carried out to verify the possibility of using these plants for fighting microorganisms
    corecore