35 research outputs found

    Are Females More Responsive to Emotional Stimuli? A Neurophysiological Study Across Arousal and Valence Dimensions

    Get PDF
    Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders

    Reward-Related Dorsal Striatal Activity Differences between Former and Current Cocaine Dependent Individuals during an Interactive Competitive Game

    Get PDF
    Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; n = 30) and former (FCD; n = 28) cocaine dependent subjects as well as healthy control (HC; n = 31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses)

    Maternal smoking during pregnancy and offspring overweight : is there a dose–response relationship? An individual patient data meta-analysis

    Get PDF
    We want to thank the funders of the individual studies: the UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol, the Danish National Research Foundation, Pharmacy Foundation, the March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation, the US NICHD (contracts no. 1-HD-4-2803 and no. 1-HD-1-3127, R01 HD HD034568), the NHMRC, the CNPq (Portuguese acronym for the National Research Council—grant 523474/96-2) and FAPESP (Portuguese acronym for the São Paulo State Research Council—grant 00/0908-7). We would like to thank the participating families of all studies for the use of data. For the ASPAC study, we want to thank the midwives for their help in recruiting families, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This work was supported by the Deutschen Forschungsgesellschaft (German Research Foundation, DFG) [KR 1926/9-1, KU1443/4-1]. Dr. Gilman’s contribution was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.Peer reviewedPostprin

    Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users

    No full text
    Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders
    corecore