27 research outputs found

    Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Get PDF
    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets

    The proximate composition of three marine pelagic fish: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus)

    Get PDF
    peer reviewedThis study presents data from an in-depth proximate compositional analysis of three marine fish species: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). These fish contained significant amounts of protein (16–17%), lipids (4–11%) and minerals (2–6% ash). The proteins, particularly from boarfish, had close to optimum amino acid profiles for human and fish nutrition. They compared favourably with other fish species in terms of total lipids and relative concentration of the omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid (11.8–13.3% and 5.9–8.1% in triacylglycerols [TG] and 24.6–35.4% and 5.8–12.0% in phospholipids [PL]). Atlantic herring had the highest lipid content among the three fish and was found to contain high levels of PL poly-unsaturated fatty acids, including omega-3 fatty acids. Minerals detected in the fish included calcium (272–1,520 mg/100 g), phosphorus (363–789 mg/100 g), iron (1.07–2.83 mg/100 g), magnesium (40.70–62.10 mg/100 g), potassium (112.00–267.00 mg/100 g), selenium (0.04–0.06 mg/100 g), sodium (218.00–282.00 mg/100 g) and zinc (1.29–5.57 mg/100 g). Boarfish had the highest ash fraction and also the highest levels of all the minerals, except potassium. Atlantic herring had considerably lower mineral content compared with the other two species and, levels detected were also lower than those reported in previously published studies. Heavy metals contents were quantified, and levels were significantly below the maximum allowable limits for all elements except arsenic, which ranged from 1.34 to 2.44 mg/kg in the three fish species. Data outlined here will be useful for guiding product development. Future studies would benefit from considering catch season, sex and developmental stage of the fish

    Hierarchical Uncoupling-Coupling of Metastable Conformations

    Get PDF
    Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling techniques for finite Markov chains with Markov chain Monte Carlo methodology. UCMC aims at avoiding the typical metastable or trapping behavior of Monte Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging longtime Markov chain is replaced by a limited number of rapidly mixing short-time ones. Therefore, the state space of the chain has to be hierarchically decomposed into its metastable conformations. This is done by means of combining the technique of conformation analysis as recently introduced by the authors, and appropriate annealing strategies. We present a detailed examination of the uncoupling-coupling procedure which uncovers its theoretical background, and illustrates the hierarchical algorithmic approach. Furthermore, application of the UCMC algorithm to the n-pentane molecule allows us to discuss the effect of its crucial steps in a typical molecular scenario
    corecore