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Abs t r ac t . Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling tech­
niques for finite Makov chains with Mrkov chain Monte Carlo methodology. 
UCMC aims at avoiding the typical metastable or trapping behavior of Monte 
Carlo techniques. From the viewpoint of Monte Carlo, slowly converging long 
time Markov chain is replaced by a l imi td number of rapidly mixing short-time 
ones. Therefore, the state space of the chain has to be hierarchically decomposed 
into its metastable conformations. This i done by means of combining the technique 
of conformtion analysis as recently i n t r u c e d by the authors, and appropriate an 
nealing strategies. We present a detailed examination of the uncoupling-coupling 
procedure which uncovers its theoretical background, and illustrates the hierarchi 
al algorithmic approach. Furthermore, application of the UCMC algorithm to the 

n-pentane molecule llows us t dicuss the effect of its crucial steps i typi 
molecular s c e n i o . 
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Introduction 

Many problems in statistical physics can be stated as the computation of 
thermodynamical integrals Ef(g) = J g(x)f(x)dx of a function or observ­
able g w.r.t. a density / [1,7]. The widely used Markov chain Monte Carlo 
(MCMC) methodology provides a flexible and general framework for approx­
imations of such expectation values by averaging over the realization of an 
appropriate Markov chain with invariant density / generated by the onte 
Carlo algorithm. 

Usually, application of MCMC to biomolecular systems has to tackle the 
trapping problem, i.e., the Markov chain remains for a very long time in one 
par t of the state space before it moves on to another par t . Such undesir 
able behavior of the Markov chain is caused by metastable sets—also called 
modes or conformations—in the state space, between which transitions are 
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extremely rare. There exists a huge literature addressing the trapping prob­
lem [1,6,7]. Especially the so-called extended ensemble methods [18] like simu 
lated tempering [20] or multicanonical algorithms [17,30] which are essentiall 
based on reweighting techniques [8] are gaining significant poplarity. 

We herein present an alternative approach, the uncoupling-coupling scheme 
MC), which has recently been introduced by the first author in [9]. The 

UCMC scheme combines the reweighting technique with the hierarchical de 
composition of the state space into its metastable sets. The key idea of 
UCMC is to regard metastable sets as almost invariant sets w.r.t. some 
propagation operator corresponding to the Markov chain. Furthermore it 
combines aspects from simulated annealing approaches in optimization [19] 
aggregation-disaggregation techniqes [28] and stochastic complementation 
techniques [22] for finite state space Markov chains. A hierarchical annealing 
structure is also used in the macrostate dissection approach for thermody-
namical integrals [3]. UCMC essentially differs from these approaches by the 
consequent iterative decomposition into a hierarchy of almost invariant sets 

It has been shown recently that these almost invariant sets are strongly 
connected to the spectral structure of the propagation operator [4,26], and 
that it is even possible for a wide range of problem classes to identify almost 
invariant sets by computing the dominant eigenvalues of the propagation 
operator [5]. Typically the actual number of metastable sets is small for 
biomolecules [1], though the corresponding state space is high-dimensional 
Even for such high dimensions the computational identification of almost 
invariant sets becomes possible in a hierarchical way by means of parameter 
embedding through the algorithm presented in [12] which the interested reader 
may also find in this volume. 

Whenever the m dominant almost invariant sets are identified, signifi­
cantly improved convergence properties are achieved by uncoupling, i.e., by 
parallel simulation of n independent chains, each one restricted to one of the 
almost invariant sets. Subsequently, the information lost in the uncopling 
step, i.e., weighting factors between the almost invariant sets, is reconstructed 
by means of the stationary distribution of an appropriate coupling matrix C. 
In order to design an efficient algorithmic scheme, the uncouplingcopling 
step is embedded into a hierarchical annealing structure, which naturall 
leads to bridge sampling techniques for computing the entries of the cou 
pling matrix. Due to the independent Markov chains emerging i C, its 
implementation is well s i t e d for parallel comptation 

Metastability in Markov Chain Monte Carlo 

The paradigm of M M C methods is to sample from a probability density 
/ and use the output of a Markov chain to compute expectation values 
w.r. t . that density. To set the notation, let O C R d be the state space 
and / the density nder consideration with / > 0. 



ally, / is defined in terms of an ormalized ensity via 

f(x) = iP-, where = f f{x)dx 
Zf J 

where denotes the normalizing onstant of / . In most cases one is in­
terested in the canonical or Boltzmann density / = exp(—ßV) with inverse 
temperat re ß for some potential energy function V : Q -> R. 

The evolution of a Markov chain X = (Xk) with state space Q is defined 
by a stochastic transition function K : Q x Q —»• R, where K(x, A) is the 
probability density to move from x to the set A in one step [23] We call / 
an invariant density of the arkov chain given by K, if 

(y (x)f(x (1) 

holds for all y g fi. 
In the MetropolisHastings algorithm a transition function K which sat 

isfies (1) is realized by first defining an arbitrary b irreducible transition 
kernel q{x y) together with the cceptane ftion 

, N min (l, 4 I Ü 4 # 4 ) for q(xy) > 0 
(xy) = i V ' « ( * , ( x ) ; yv y> (2) 

[ 1 otherwise 

In a only ratios of the form f(y)/f(x) have to be computed, which is feasible 
even if the normalizing constant Z: is unknown. 

Based on q and we define K as the s of two contribtions, 

{x y) = k(x y) + r(x)5{x - y) 

where the absoltely c o n t i n s part k is given by 

q(xy)(xy)]fx^y 

[ otherwise 

and the singular component by r(x) = 1 — J k(x, y) dy. 
With this K one step in the realization of the Markov chain from the 

state Xk = x consists of: a) propose some y distributed according to q(x,y), 
b) accept this step by setting X^ = y with probability (x y) or c) reject 
the proposal leaving X^+ = x. 

The construction of K guarantees that the associated Markov chain X 
is irreducible—provided that q is i r r e d c i b l a n d that for all x y G Q the 
detailed balance condition 

(x(x (y{y (3 
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holds (for details, see e.g. [29]). Due to (3) K is called reversible w.r . t 
/ . If we further assume that X is aperiodic—which is guaranteed whenever 
r > 0—we can state that / is the uniq invariant density of X. 

A realization {xk} of X with sample points k = 1 , . . . , N now enables u 
to calculate expectation va les Ej(#) = f g(x)f(x) dx w. r t / by sing the 
estimator 

Ef(») = j E ^ ) (4) 
fc 

which converges to E/(<?) for N —• oo. Altogether, we can say that MCMC is 
a method that allows to sample from / w i tho t knowledge of the normalizing 
constant Zt. 

For two sets A, B C fl the transition probability between A and B within 
an ensemble distributed w.rt . the density / and d r i n g one step of the 

arkov chain is given by 

A,B) = {xy)f(x)dxdy (5) 
J f{x) dx 

Disretization. Using this, we can easily discretize the Markov chain given 
by K. This is done by coarse graining with an arbitrary box decomposition 
of the phase space fi into m disjoint sets B . . . ,Bm c i? with UBj = Q. 
Based on this box decomposition, we introdce the new finite phase space 
i? = { . . . , B and define the transition fnction on Q via 

,Bi) = ,Bi (6) 

The finite dimensional Markov chain defined by K again is reversible w.r t 
its invariant density / given by f ( ) = J f(x)dx. henever / is niq 

for / is also n i q e for 

2.1 Propagator 

In the following we want to understand the global behavior of a Markov chain 
via the eigenmodes of its associated propagator P This propagator is defined 
in terms of the transition fnction by 

Pu{y) = k{xy){x)dx + r(y)(y) (7) 

describes the propagation of a phase space density with one step of the 
Markov chain. One can show that the reversibility of K w. r t / implies that 
its spectrum a(P) is real-valued. More exactly, we have a(P) C [—11], and 
the largest eigenvalue is A = 1, for which / is an eigenfunction, i.e. Pf = f. 
Assme that we order the eigenvales of w.rt . their m o d s , s c h that 



erarhica 

we have Ai = 1 > A2 — Then, the approximation of expectation va les 
via the arkov chain X goes with a geometric rate: 

(g)-E^-Jg(xk)\ < (8) 

where Ex* denotes the expectation over all realization of the chain starting 
in x* € f2. The smaller | A21, the faster a good sampling of the density / is 
achieved. A Markov chain is called rapidly mixing whenever | A21 <§; 1. 

Recall that the spectrum a(P) consists of two disjoint parts: the discrete 
spectrum containing all isolated eigenvalues of P with finite multiplicity, and 
a continuous part, the so-called essential spectrum. In the case considered 
herein, this essential spectrum is contained in some interval [—p, p] with p 
being the supremum of the rejection function r over Q. We assume that 
p <C 2, which typicall is the case; therefore an inference of the essential 
spectrum with eigenvales in the vicinity of A = 1 will not o c c r in the 
following 

Discretization of P. Next, a s s m e that we discretize the Markov chain w.r.t 
some box decomposition Bi,..., Bm C O resulting in the transition function 
K given in (6). Then the phase space is finite and the propagator P becomes 
an m x m propagation matrix P which simply is the co lmn stochastic matri 
with entries ,Bt) = ,B{) 

2.2 Metastability 

If A is close to Ai = 1, we often find that the reason for the undesirably 
slow convergence is that the Markov chain remains for a long time in a 
metastable region—also called mode or conformation—of the phase space, 
before it moves on to another one. We will call a set A metastable or almost 
invariant under our Markov chain, if the transition probability from to 
itself is close to one, i.e., if K(A, A) m 1. 

We herein will exploit the following observation concerning metastability: 
If there are n eigenvalues close to Ai = 1 (including Ai itself) and a signifi­
cant spectral gap to all remaining eigenvales, then there also are n disjoint 
metastable subsets and vice versa [22,27]. 

If this is the case, the chain is rapidly mixing within the corresponding 
metastable subsets and the undesirably slow overall convergence res l t s from 
the rareness of transitions between these metastable sets. 

The close connection between a separated cluster of dominant eigenvalues 
and the existence of metastable subsets has another very important algorith­
mic consequence: it has been shown that one can identify the n metastable 
subsets only on basis of the eigenvectors associated with the n dominant 
eigenvales [26,27] This insight leads to a significantly general identification 
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algorithm [5] used for the detection of biomolecular conformations. For il 
lustration of its key idea we introdce an appropriate example in Sect. 2 
below. 

2.3 Illustrative Example 

ow and in Sect. 3, o r construction will be illustrated by means of the n-
butane molecule. The United-Atoms representation [24] is used to set up a 
separated Hamiltonian /H{p, x) = T(p) + V(x), where the kinetic energy T(p) 
depends only on the generalized momenta p and the potential energy V(x) 
only on the coordinates x. Although the potential V is 12-dimensional, the 
overall structure and dynamical properties of n-pentane is mainly determined 
by its torsion angle 9 =9{x). For means of illstration, we therefore choose 6 
as our single conformational degree of freedom and select a decomposition of 
the range [0,27r] of 0 into 23 disjoint boxes O C [ 2TT] k = . . . 23 These 
boxes define disjoint boxes 

k = {x&fl: 0(x)GOk}, fc = l . . . 2 3 

which decompose the entire phase space fi C R12 . 
For the MCMC sampling we use hybrid Monte Carlo (HMC) [2,6,26] 

which has become a widely used method over the last decade for computing 
expectation values (mainly thermodynamic observables) in moleclar sys­
tems [1]. It perfectly fits into the framework of MCMC discussed herein 
Under weak assumptions on the potential, the canonical density given by 
/ = exp(—ßV) is its unique invariant density. Let K denote the transition 
function of HMC for the inverse temperature ß, and let K be its discretization 
w.r.t. the box decomposition designed in the last paragraph. The propagation 
matrix P associated with K is illustrated in Fig. 1, whereas the eigenvectors 
of the three dominant eigenvalues are given in Fig. 2. 

Fig. 2 also illustrates the key idea of the algorithm for identifying almost 
invariant sets via these eigenvectors: For each state j = 1 , . . . , 23, we denote 
by Sj G { + , } 3 the 3tupel of signs of the jth components in each of the three 
eigenvectors, the socalled sign combinations. The forth subfigure in Fig. 2 
shows that there are only three different sign combinations, and that all states 
j with the same Sj belong to the same metastable set. Thus, the metastable 
sets can be identified as sets of states with identical sign combination. This 
idea can be generalized substantially, and is the key idea of the identification 
algorithm presented in [5] 

The Uncoupling Step 

Assume now, that we are in a situation with n disjoint metastable subsets. I 
it is true, that the chain is rapidly mixing within each metastable subset and 
that the ndesirably slow overall convergence r e s l t s from the weak copling 
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Fig. 2. Subfigure 1-3: Right eigenveors of the three dominant eigenvalues of the 
propat ion m t i x P shown in Fig. 1. Subfigure 4: The three metastable subset 

e c h c t e i z e by three different sign combitions of these eigenvectors 

between this metastable sets, then uncoupling of the metasable sets sho ld 
lead to n rapidly mixing ncopled chains 

1 stricte plin 

Assume that we know the n disjoint metastable sets A\_,...,Ano£ our arkov 
chain, and that we now want to sample separately in each Ai,iovl = 1 . . . n. 
Then, for each / we define a restricted Markov kernel from on A by 
setting 

(xy) = k{xy)+r(x)S(x-y) (9) 

wi 

and 

(xy) 
(x (x ) if y and  

otherwise 

(x) = 1 - / h{xy)dy 
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Clearly, detailed balance still holds, so that K is again a reversible Markov 
kernel. Now, let // = 1 A , / be the restricted unnormalized density on Ai 
with 1 A denoting the indicator function on A, i.e., 1A(X) = 1 if x G A and 

(X) = 0 otherwise. Then, under the assumption, that is irredcible,  
fi/Zt is the nique invariant density of K%. 

We denote by Pi the corresponding propagator of K%. If we assume that 
Ai is metastable and that it cannot be subdivided further into two or more 
almost invariant sets, then we can state the following: The second largest 
eigenvalue A2 of P/ is substantially less than 1, otherwise there would exist a 
decomposition into two or more metastable bsets. As a conseqence, d 
to A2 <C 1, the corresponding Markov chain A/ is rapidly mixing. 

For the restricted Markov kernel Ki the detailed balance condition (3) 
still holds for all x,y G Af, therefore the density // is a scalar multiple of 
the correct global density / of the nrestricted arkov chain T h s , we can 
regain the global density via 

/ = (10) 

in terms of the local densities /&. Only the scalars 7T/, / = 1 , . . . n, are n­
knowns which represent the neglected coupling between the sets Ai. 

But before we go into the details of the coupling algorithm for the com­
putation of these weights T we want to give illstrations of the steps taken 
so far 

3.2 Illustration of Restricted Sampling 

For ease of presentation we will now illustrate this procedure in a finite di 
mensional situation. To this end, let P again denote the propagation matrix of 
HMC for the simple n-butane molecule associated with the box discretization 
given in Sec. 2 3 Let s denote the associated chain by X in the following 
Moreover, let Ai,A2,A3 be three disjoint subsets which we want to be un­
coupled. The resulting restricted sampling corresponds to the propagation 
matri P r with entries 

, k,l G Ai for i G {12,3} and k^l 
k G Aiy I G for « j G {1 and i ^ j 

Pu+ E u,k = l&Aj 

Consequenty, if we assume the boxes for each subset Ai to be in a successive 
order, Prestr has block-diagonal form, i.e., the associated restricted sampling 
chain consists of three uncoupled Markov chains. The three stochastic matri 
ces Pi on the block diagonal of P r are the propagation matrices associated 
with these ncopled chains 



Figure illustrates the situation when the sets A\ = {1, . . . ,7},A 2 = 
{ 8 , . . . , 16}, A3 = {17, . . . , 23} are good approximations of the three metastable 
sets of X. The right hand part of Fig. 3 shows the ordered spectra of the 
three uncoupled propagation matrices Pi. We observe that the largest second 
eigenvalues of all three P; indeed are substantially less than 1, i e , the three 
restricted sampling chains in fact are rapidly mixing 
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Fig. 3. Left: Illustraton of the entries of the propagation matrix Pres (as define 
in the text above) for a goo choice of A\,2,Az. Intensity of entries ue to loga­
ithmic s l e . Right: Orer pectum of 
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Fig. 4. Lft: Invariant ensity / . Center: Invariant densies /; = 1,2,3 in the 
three met tab le sets A as in Fig. 3) Right: Quotients T = f/f in the three sets 
Ar 
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Figure 5 now illustates approximatons of the three metasable sets 
of X, namely Ai = { 1 , . . . , 9}, A2 = {10, . . . , 15}, A3 = {16, . . . , 23}. Again, 
the right hand part of Fig 3 shows the ordered spectra of the three uncoupled 
propagation matrices Pi. We observe that the largest second eigenvalue now 
is much closer to 1, so that at least the first of the three restricted sampling 
chains is slowly mixing 
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Fig. 5. Left: Ilustration of the entries of the propgation marix Prestr for bad 
choice of Ai,2,Ä3. Intensity of enties ue to logaithmic s l e . Right: Ordeed 
pectum of 

3 M e s t b l e Se in i m i o 

In Sects. 2.2 and 2.3 we saw how to identify the metastable sets of Markov 
chains with low-dimensional and/or finite state space via dominant eigenvec 
tors of the associated propagator. I this section we will show how to deal 
with high-dimensional state spaces. We will see that one may extract good 
approximations of the metastable subsets of a certain Markov chain X (if 
they exist) from good ^-samplings of its invariant density / . 

This seems to be a vicious circle: we want to use good approximations of 
the metastabe sets to find faster sampling strategies by uncoupling-coupling 
techniques, but we also want to start the construction of such good approx­
imations by assuming that some reliable sampling already is available. In 
Sec. 3.4 below, we will see that we are able to avoid this spposed circle by 
exploiting an appropriate annealing strategy. 

Suppose that {xk}k=i,...,L is the realization of a Markov chain X acting on 
the state space Q and corresponding to a propagator P. In order to identify 
the metastable sets we have to compute the dominant eigenvectors of P, and 
therefore discretize P. Hence, we need an appropriate box discretization of 
SI where the n m b e r of boxes sho ld not be so large that it prevents 
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from computing the dominant eigenvectors of the discretization matrix P of 
P In order to design such a box discretization we first identify the cluster 
structure of the sampling, i.e., we cluster {x^} into a sufficiently large number 
of similarity clusters. This can be done, e.g., via the algorithm presented in 
[12] using self-organizing maps. These clusters define o r discretization boxes 

ch that the algorithm works as follows: 

(1) Use the techniques presented in [12] to cluster {xk}k=i,..L into M sim­
ilarity c ls ters C I , . . . , C M - (M need not be defined i advance, b 
emerges during the algorithmic process.) 

(2) Assemble the discretization matrix € Rj
M><M

 0f w i th entries 

_ #{x g C and x € Ck}  

~ {X G C 

(3) Compute metastable sets of via its dominant eigenvectors sing the 
algorithm presented in [5] 

3.4 Annealing 

If we start the simulation with a Markov chain for the normalized density 
/ of interest, it will typically get trapped in one of its metastable sets 
which is exactly what we want to avoid. One way out of this undesirable 
occurrence is to exploit the embedding of the unnormalized density / out of 
a family of densities /(/?). Here ß is the embedding parameter, e.g., the inverse 
temperature in the usual case of the Gibbs densities /(/?) = exp(—ßV). Let 
/?* be such that the density of interest is / = /(/?*). Correspondingly, we have 
a family of Monte Carl arkov chains X(ß), and a family of propagation 
operators P(ß). 

Consider now the special case of the inverse temperature ß and /(/?) = 
exp(—ßV): By increasing temperature, i.e., decreasing ß, the density /(/?* 
transforms into smoother ones with less metastable regions. This means that 
the second eigenvalue A2(/3) of P(ß) moves away from the largest eigenvalue 
Ai(/3) = 1, i.e., the spectral gap increases with decreasing ß, and we get 
better and better convergence properties for the chains X{ß). 

For reasonably small ß (but sufficiently bounded away from ß = 0), the 
chain X(ß) will still exhibit almost invariant sets with a significantly reduced 
degree of metastability compared to that of the chain X{ß*). However, the 
almost invariant sets of X(ß) will be reasonable approximations of almost 
invariant sets of X(ßt) [27]. This is due to the fact that the form of the 
dominant eigenvectors of the P(ß) is only mildly sensitive to changes in ß 
(in contrast to the drastic effect of such changes on \2{ß)) [25]. 

We can nicely see this when returning to the n-butane example of Sect. 2.3. 
Let the inverse temperature ß be associated with a temperature of 300 K. 
Based on simlation ofX(ß), the identification algorithm explained in Sect 3 
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results in the almost invariant sets Ai,A27As already shown in Fig. 2. Let  
denote the restricted chains associated with the densities 1A^/(/?*), j = 

1,2,3, for the low temperature /?* ~ 100 K of interest. Then, the second 
eigenvales A of the propagators associated with the X are 

~T~ 1 2 3 ~ 
j 328 0372 0307 

which illustrates that these restricted chains are rapidly mixing as desired. In 
comparison, an estimate for the second eigenvalue of the unrestricted chai 
X{ß*) yields X(ß*) > 0.999, indicating extremely slow mixing 

The Coupling Step 

In the coupling step we will show that it is possible to regain information 
about a global density / = ^2ki^kfk m terms of densities fu without sam­
pling / itself, by setting up a coupling matrix C with n as its stationary 
distribtion. This together with the decomposition from the uncoupling step 
allows s to formlate the algorithmic hierarchical annealing scheme in Sec 5 

4.1 The Coupling Matrix C 

Now suppose that arbitrary unnormalized densities /o, •. . are given and 
that we are interested in the global nnormalized density 

k=0 

For some set c Q we introduce the notation ß() = JA f(x)dx. To obtai 
information about the density / corresponding to / , it is sufficient to know the 
ratios of normalizing constants 7tfc = , becase then we can reconstrct 
/ from the fk's d e to (11) by 

y 

2 > A = E - £ £ {- = / (i2) 
fc=o fc=o 

Let us denote by Ak = supp(//t) the support of the densities fk in the 
state space Q. Furthermore, let us assume in the following that each is 
connected to any Aj in the sense that there exists a seqence of sets 

Ai = h , A h , . . . , A 1 , A s c h t h a t ß{ir rir+1) > 0 (13) 

for r = 1 , . . . , k — 1. This condition obviously is not satisfied if we assume 
the /ft to be the restricted densities of Sect. 3.1. However, it makes sense i 
the context of annealing, e.g., with / 0 = /(/?), and /_, = lJ4J/(/3*), with Aj 
j = l , . . . n being the almost invariant sets of X(ß), cf. Sect. 3.4. Now, the 
densities / o , . . . , fn automatically satisfy o r above conditions, in par t ic lar 
the connectivity condition (13) 



Definitio of the Coupling Matrix. Returning to the general case, we need to 
design an algorithm which allows to compute the weights -KU m (12) (or at 
least approximations of them) without directly referring to We therefore 
define the cupling matrix C = ( c ) € a t + i by 

^ % ^ min ( l J ü i for i ? j and v( A) > 0 
\ *ii J 

f o r i ^ i a n d / z ^ ) = 0 (14) 

* ~ Y;k=0 e l s e 

where 0y 1{nAj denotes the common s p p o r t of the densities and 

Properties of the Coupling Matrix. Obviously, C is a stochastic matrix, be 
cause for i ^ j we have 0 < c^ < l / (n +1) , while due to the diagonal entries 
the sum of each row is 1 The Markov chain corresponding to C is also ape­
riodic, simply because c„ > 1/n + 1 for each diagonal entry. Condition (13) 
guarantees that for any two i,j € {0 , . . . n} there is a path from the state i 
to the state j in C, which makes C irredcible in addition The key point i 
the constrction of C is that 

(7 . . . ) = — Z t . . . Z f 

is the unique stationary distribution due to the aperiodicity and irredcibility 
of C. This follows immediately from the detailed balance condition 

E^A min (i
 Zf±h\ = V ^L min (i ^ak (is) 

which moreover shows that C is reversible 

Expectation Values. Suppose that we can compute expectation values for the 
fks, e.g., by restricted sampling. Moreover assume that we know the correct 
weights IT of f = ^2k TTkfk via the stationary distribution of C. Then, we are 
able to compute expectation va les w . r t / , which are now given by 

(9) = E T ( 9 ) = nk g{x)fk{x)dx (16) 
j 

Thus, the remaining bottleneck now is to find an algorithm for efficiently 
computing an approximation C of C. Therein, we will have to approximate 
the ratio of normalizing constants, which as opposed to approximation of the 
normalizing constants itself can at least in principle be computed efficiently 
(see Sec. 4.2). fact, like in the Metropolis algorithm we replace a direct 
computation of Z by the comptation of ratios of normalizing constants 
between the s 
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2 id lin 

We herein continue to use the notation of the last sbsection. In the following, 
let i and j always be two indices satisfying ß(Ai ) > 0 Then we have to 
approximate the ratio of normalizing constants Z jZ ; We c o l d try to 

sample fi and fj directly (with good convergence rates both) and compute the 
approximation from the generated sampling data. Unfortunately, because of 
the high dimensionality of J?, the overlap between these two samplings would 
in general be to small to extract a statistically reliable approximation of the 
ratio of normalizing constants. 

Therefore, we have to use so-called bridge densities to compute the desired 
ratios of normalizing constants [14,21]. A generic choice for a bridge density 
on the set A% is given by 

= a + (1 - a) (17) 

for some a e [0,1]; however, more elaborate bridge densities are in use de 
pending on the specific application. By mixing both densities into f , we 
expect to satisfy in part iclar: 

(i) The Markov chain X^ corresponding to fij is rapidly mixing. This as 
sumption is justified whenever we can garantee rapid mixing for the 
chains Xi and X associated with fi and fj. 

(ii) A simulation run of Xij allows a statistical reasonable reweighting to 
the densities fi and fj; this presupposes that all important parts of the 
densities fi and fj got sampled by the simlation. This means that the 
reweighted data allow to approximate 

4.3 Annealing Example 

Let us again return to the situation with / 0 = /(/?), and fj = 1A, / ( / ? ) , with 
Aj,j=l, ...,m being the almost invariant sets of X(ß), cf. Sect. 3.4. Suppose 
that ßt is the inverse temperature of interest, and that the inverse temper­
ature ß < fi* gives s a chain X(fi) with sufficient convergence properties 
Since now / = f(ß) + f(ß*) by constrction, the last m weights T 
in (12) satisfy 

y „ 
zA zß 

where Zß and Zpt denotes the normalizing constants of f(fi) and f{f). So, 
the reweighted coefficients 
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are the correct weighting factors for the density ( / * )= Y ffj 0 I interest 

By construction, we have ß(Ai P j) > 0 only for i = 0 and j = 1 , . . . , m 
or the reverse case. Since tfoj = <f>jo = IAJ we have to approximate the ratios 
Z Z,, = Z1A T h s , the required bridge densities fa combine 

the chain X^ with the restricted chains Xj associated with fj, which all 
are rapidly mixing, since ß was assumed to be small e n o g h and the s are 
restricted to the almost invariant sets Aj. 

For the n-butane example of Sec. 2.3 a sampling for ß given by a temper 
ature of 300 K results in the three almost invariant sets already illustrated in 
Fig. 4. If we are interested in /?* given by a temperature of 100 K, the bridge 
sampling re s l t s in the following approximate 4 x 4 copling matrix: 

9939 000 0058 000 
2500 7500 0 
2500 7500 0 
2500 7500 

with the sationary d i s i b i o n 

TT = ( 0 9 7 6 3 7 0 0 0 5 4 0 2 2 5 4 0 0 0 5 6 ) T 

which implies d e to (18): 

) = ( 0 0 2 2 8 9 5 3 5 0 2 3 7 ) 

Let { a f c = l , . . . , i denote the sampling of the bridge densities fa 
j = 1 2 , 3 , and let {ak\k = l,...,Nk} denote the reweighting factors of 
the /ojsampling to f. Then, due to (16), expectation values of a function g 
w.rt . the density / ( / ) = f{ß)/Zf,) of interest can be approximated via 

k 

If we use this to approximate the probabilities pj E ^ ) = f f(ß*)dx 
to be in the sets Aj for the n - b t a n e example, we get 

p = ( 0 0 2 2 8 0 9 5 3 5 0 2 3 7 ) 

which we have to compare with the exact va les 

p= ( 0 0 2 4 0 9 5 2 0 0 2 4 0 ) 

which can be c o m p e d analytcaly in this smple exampl 
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C3^r^ cr~A* ~z^> c^Z^ c2o C2^> 
ig. 6. a) Schematic plot of a three level hierarchical decomposition. An ni 

sampling of /o decomposes the state pace fi = Ao into two subsets Ai and A2 
which get further subdivided into {A3, A4} and {A5, Ae A7}. The three level are 
related to a annel ing process; the top level is related to ßo, the i n t e m e a t e 
level to ß\ > ßo, nd the ground level to the inverse temperature ß = ßt > ßi of 
interest, b) The same subdivision as i a), but now represented s a graph, w h e e 
nodes correspond to the sets Au- As an example, the density ^27/ corresponds 
to the hatched part of A2; in UCMC neither ^ / 2 nor /V is s ample , but rather 
the bridge ensity /27, which sufficiently encompsses the important parts of ^27/ 

d f-j. Additionally, the t e e s tuc ture of the graph g u a n t e e s that the coupling 
t i x C is i u c i b l e . 



ierarchical Annealing 

Why should we restrict the algorithm to just two temperatures and only one 
decomposition of the phase space in almost invariant subsets? As already 
emphasized we have to expect that there is a hierarchy of almost invariant 
sets. Moreover, it will be much easier to choose "good" initial "high" tem­
peratures, if we allow for a hierarchy of temperatures ranging from the high 
initial temperature down to the probably low temperature of interest. The 
presentation of all prior steps has been general enough to allow for a recur 
sive, hierarchical fc-level generalization of the two-level approach explained 
in the annealing example in the previous section. The resulting concept of 
"Hierarchical UCMC" is illustrated and explained in detail in Fig. 6. 

In order to control the statistical error of the required samplings of the 
bridge densities, we have to control the simulation length of each sampling 
Since appropriate simulation lengths may vary drastically, we use the con­
vergence estimator described in [13,15] to automatically stop the simulation 
For this estimator, multiple realizations of a Markov chain Xk are generated 
to compute estimates depending on the variances between these realizations 

In view of the various samplings of bridge densities the hierarchical ap­
proach has another benefit: Parameters for a bridge density can be directly 
extracted from its previous density in the hierarchy. Therefore, there is no 
need to perform preliminary simulations to adjust parameters as is typically 
the case for other techniques sing extended ensembles [1,18]. Because we 
start UCMC with a standard Monte Carlo simulation at a sufficiently high 
temperature, the uncoupling step of the algorithm runs fully a tomat ic until 
the density of interest is reached. After that, the approximation C of the cou­
pling matrix C is obtained from the uncoupling step by pure data analysis; 
the corresponding reweighting formulas and the approximation of ratios of 
normalizing constants can be fond in [9] 

umerical Example 

Biomolecules are an important application class of CMC methods in sta 
tistical physics. There exists a wide range of MCMC algorithms, which are 
trying to tackle the problems and challenges of biomolecular systems [1] 
Biomolecules are also well suited for the U M C approach: They possess many 
conformational substates which can be clustered into only a few, extremely 
metastable ones [11]. In other words, metastable conformations consist them­
selves out of less metastable subsets. As an illustration of the hierarchical de­
composition of conformational substates, we here apply UCMC to n-pentane. 
This molecule is still far below the complexity of proteins or nucleic acids, 
but the algorithmic properties can be discussed in more detail. We have used 
the all-atom Merck force field [16] for the energy representation which we 
also se for simlations on biomolecles The n-pentane molecle consists of 
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5 C-atoms and 12 H-atoms, which results in fl c R 1 . The clustering of data 
by means of selforganizing box maps [12] is restricted to the two torsion 
angles defined by C-atoms only. To make use of the independence between 
all emerging Markov chains, all Markov chains on each level of the hierarchy 
run in parallel. For the initial sampling we use HMC [2,6] whereas the bridge 
densities are sampled with adaptive temperature HMC [10] (ATHMC), an 
enhancement of HMC where a bridge density between two adjacent temper 
atures is sampled by adapting the tempera t re of each H step according 
to the potential energy. 

We illustrate UCMC by a three level hierarchy at temperatures 400 K, 
200 K and 100 K corresponding to inverse temperatures ß0, ßi and ß = /?*, 
respectively. The initial sampling is started at 400 K with state space A0 = Q, 
a temperature at which HMC overcomes all conformational barriers. Yet, if we 
perform a clustering we observe the presence of metastable sets. In Table 1 the 
eigenvales of the hereby discretized propagation operator (ßo) are given. 

Tabl 1. igenvalues of the discretize operator P(ß) at different tempertures 
In addition to the initial sampling a 00 K, we also give the spectra fom long 
simulation runs of 2 x 105 steps at 200 K and 100 K. Note, that the spectrum at 200 K 
clearly indicates the effect of insufficient sampling ue to increse metstability, 
which get even wor 00 K. 

0000 0000 0000 
0.99 0.999 0.9999 
0.99 0.999 0.455 
0.9914 0.999 0.2206 

A6 0.991 0.9994 0. 
A6 0 . 5 9 0.999 0.878 

0 . 5 5 0. 0.766 
A8 0 . 5 4 0.1919 0. 
A9 0 .00 0.1541 0.670 

0.380 0.1494 0.1499 

Figure 7 shows the bridge samplings in 7 metastable sets Ai,...,Ar ob­
tained from the identification algorithm [5], where the spectral gap was de­
tected between A7 = .9855 and Ag = 0.9254. Note that the eigenvalues 
As = 0.9254 and A9 = 0.9009 together with the extremely large spectral gap 
beyond A9 already indicates the emergence of two further metastable sets 
Actually, these two metastable sets got uncoupled on the next level of the 
hierarchy (see Figure 7). This gives s the s e t s . . . , A , in which again 
bridge densities were restarted 

Having completed the uncoupling step, an approximation C G Mati7Xi7 
of the copling matrix C by data analysis was set p, which gave s the 



0.2371 0.3324 = 0.3614 0.536 0.9925 0.9841 
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Fig. 7. Initial uncoupling of Ao nto 7 metastable sets Ai,..., Ar as a projetion 
of the two torsion angles. The dat points shown re the sampling points from the 
restricted Mrkov chains corresponding to the bridge densities between 400 K an 
200 K, whereas the numbe above each set denotes the 2n eigenvalue of the corre­
sponding propagation operator. The sets An and A@ which possess 2nd eigenvlues 
close to one get further uncoupled into two sets each—their 3r eigenvlue is 0 .591 

0.3395, respectively—for the next h i e r c h i a l level 

invariant density jt. Exemplarily for the coupling par t of the algorithm, in 
Fig. 8 reweightings of the bridge density /0 to the densities /o and f± are 
shown. Finally, using (19) the restriction TT = (TTQ, ... ,nn) of the invariant 
density TT of enables s to compute any desired expectation v a l e s w . r t 

0.05 

0.04 

0.03 

0.02 

0.01 

f f 
04 0 

150 

Fig. 8. Reweighting of the bridge d n s i y /o4 to the d e n s e s ^ 4 / 0 and JA. The 
reweighted densities show the typical gaussian shape. Additionlly, the overlap 
between /04 with each of the reweighted densities id ica tes t t i t i a l reliabl 
comput t ion of the r t i o of n o r l i z i n g constant Z, s /Z 

Due to a symmetry in the Hamiltonian we can derive symmetric sets i 
the state space by discretizing each torsion angle into three boxes of 120°. If 
we denote by s the probability to be in the corresponding 120° x 120°box, 
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(s) po se se s the following symmetic s c t 

Actually, these 9 sets also reflects roughly the 9 metastable sets As,..., AiQ 

f o n d by C. sing (19) to get an approximation of at 100 K yields 

•SuCMC 

which is in good agreement with S, whereas the direct simlation 
at 200 K and 100 K from Table 1 r e s l t s in 

10" 123 10" 

0118 9542 0117 

50 10" 0095 57 10" 

(ß 
098 

168 558 104 

17 KT 065 
and 601 0 

399 0 

UOfc 

0 02 

respectively, that once more demonstrates the insfficient samplings already 
observed in the spectra from Table 1. 

Regarding the small probabilities to be within the metastable sets s n , §33, 
and S31 of n-pentane, one appropriate strategy to bound the number of 
metastable sets for larger molecules would be to skip identified metastable 
sets during annealing whenever the probability to be in such a set is below 
a given threshold. However, we have seen that an uncoupling into all local 
minima only occurs if we proceed towards very low temperatures. For larger 
molecules one is normally interested in temperatures around 300 K where one 
would expect a reasonably small n m b e r of metastable sets composed of less 
metastable sbse t s 

onclusion 

In this article, we have worked out details of a hierarchical uncoupling-
coupling Monte Carlo ( C M C ) method n a first step, we investigated the 
question of how to uncouple a reversible Markov chain hierarchically by de 
composing its state space into metastable sets. In a second step, we illustrated 
the algorithmic scheme by applying it to the simple n-pentane problem, where 
everything is wellnderstood and which therefore can be used for testing. In 
this example, UCMC has shown to allow fast samplings in metastable sets 
as well as a correct reweighting. For the decomposition of the state space 
in the example, UCMC has been combined with selforganized box maps as 
presented also in this vo lme 



As a next step, we aim at applying UCMC to larger molecules. However, 
before we can take this step, we still need to gain a deeper understanding of 
the combination of C with decompositions in higher dimensional state 
spaces 
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