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Abstract. Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling tech-
niques for finite Markov chains with Markov chain Monte Carlo methodology.
UCMC aims at avoiding the typical metastable or trapping behavior of Monte
Carlo techniques. From the viewpoint of Monte Carlo, a slowly converging long-
time Markov chain is replaced by a limited number of rapidly mixing short-time
ones. Therefore, the state space of the chain has to be hierarchically decomposed
into its metastable conformations. This is done by means of combining the technique
of conformation analysis as recently introduced by the authors, and appropriate an-
nealing strategies. We present a detailed examination of the uncoupling-coupling
procedure which uncovers its theoretical background, and illustrates the hierarchi-
cal algorithmic approach. Furthermore, application of the UCMC algorithm to the
n-pentane molecule allows us to discuss the effect of its crucial steps in a typical
molecular scenario.
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1 Introduction

Many problems in statistical physics can be stated as the computation of
thermodynamical integrals Ef(g) = [ g(z)f(z)dz of a function or observ-
able g w.r.t. a density f [1,7]. The widely used Markov chain Monte Carlo
(MCMC) methodology provides a flexible and general framework for approx-
imations of such expectation values by averaging over the realization of an
appropriate Markov chain with invariant density f generated by the Monte
Carlo algorithm.

Usually, application of MCMC to biomolecular systems has to tackle the
trapping problem, i.e., the Markov chain remains for a very long time in one
part of the state space before it moves on to another part. Such undesir-
able behavior of the Markov chain is caused by metastable sets—also called
modes or conformations—in the state space, between which transitions are
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extremely rare. There exists a huge literature addressing the trapping prob-
lem [1,6,7]. Especially the so-called extended ensemble methods [18] like simu-
lated tempering [20] or multicanonical algorithms [17,30] which are essentially
based on reweighting techniques [8] are gaining significant popularity.

We herein present an alternative approach, the uncoupling-coupling scheme
(UCMC), which has recently been introduced by the first author in [9]. The
UCMC scheme combines the reweighting technique with the hierarchical de-
composition of the state space into its metastable sets. The key idea of
UCMC is to regard metastable sets as almost invarient sets w.r.t. some
propagation operator corresponding to the Markov chain. Furthermore it
combines aspects from simulated annealing approaches in optimization [19],
aggregation-disaggregation techniques [28] and stochastic complementation
techniques [22] for finite state space Markov chains. A hierarchical annealing
structure is also used in the macrostate dissection approach for thermody-
namical integrals [3]. UCMC essentially differs from these approaches by the
consequent iterative decomposition into a hierarchy of almost invariant sets.

It has been shown recently that these almost invariant sets are strongly
connected to the spectral structure of the propagation operator [4,26], and
that it is even possible for a wide range of problem classes to identify almost
invariant sets by computing the dominant eigenvalues of the propagation
operator [5]. Typically the actual number of metastable sets is small for
biomolecules [1], though the corresponding state space is high-dimensional.
Even for such high dimensions the computational identification of almost
invariant sets becomes possible in a hierarchical way by means of parameter
embedding through the algorithm presented in [12] which the interested reader
may also find in this volume.

Whenever the m dominant almost invariant sets are identified, signifi-
cantly improved convergence properties are achieved by uncoupling, i.e., by
parallel simulation of n independent chains, each one restricted to one of the
almost invariant sets. Subsequently, the information lost in the uncoupling
step, i.e., weighting factors between the almost invariant, sets, is reconstructed
by means of the stationary distribution of an appropriate coupling matrix C.
In order to design an efficient algorithmic scheme, the uncoupling-coupling
step is embedded into a hierarchical annealing structure, which naturally
leads to bridge sampling techniques for computing the entries of the cou-
pling matrix. Due to the independent Markov chains emerging in UCMC, its
implementation is well suited for parallel computation.

2 Metastability in Markov Chain Monte Carlo

The paradigm of MCMC methods is to sample from a probability density
f and use the output of a Markov chain to compute expectation values
w.r.t. that density. To set the notation, let 2 C R? be the state space
and f the density under consideration with f > 0.
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Usually, f is defined in terms of an unnormalized density f via

f(w):fé—i), where Zf:/;zf(x)dx

where Z i denotes the normalizing constant of f In most cases one is in-

terested in the canonical or Boltzmann density f = exp(—8V) with inverse
temperature S for some potential energy function V : 2 = R.

The evolution of a Markov chain X = (X) with state space 2 is defined
by a stochastic transition function K : 2 x 2 — R, where K(z, A) is the
probability density to move from z to the set A in one step [23]. We call f
an invariant density of the Markov chain given by K, if

@) = /Q K (,9)f («) de )

holds for all y € (2.

In the Metropolis-Hastings algorithm a transition function K which sat-
isfies (1) is realized by first defining an arbitrary but irreducible transition
kernel ¢(x,y) together with the acceptance function

in (1. L) 7)Y g, >0
alz,y) = {mm ( ’ q(mu)f(w)) or q(x,y) .

1 otherwise

(2)

In « only ratios of the form f(y)/f(z) have to be computed, which is feasible
even if the normalizing constant Z; is unknown.
Based on ¢ and a we define K as the sum of two contributions,

K(z,y) = k(z,y) + r(x)é(z —y),
where the absolutely continuous part k is given by

k(z,y) = {Q(x,y)a(x,y) ifz £y

0 otherwise

and the singular component by r(z) =1 — [ k(z,y) dy.

With this K one step in the realization of the Markov chain from the
state Xy = 2 consists of: a) propose some y distributed according to ¢{x,y),
b) accept this step by setting X1 = y with probability a(z,y) or ¢) reject
the proposal leaving X1 = x.

The construction of K guarantees that the associated Markov chain X
is irreducible—provided that ¢ is irreducible—and that for all z,y € 2 the
detailed balance condition

f@) k(z,y) = fly) k(y, ) (3)
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holds (for details, see e.g. [29]). Due to (3) K is called reversible w.r.t.
f- If we further assume that X is aperiodic—which is guaranteed whenever
r > 0—we can state that f is the unigque invariant density of X.

A realization {z3} of X with sample points k =1,...,N now enables us
to calculate expectation values E¢(g) = [, g(z dx w.r.t. f by using the
estimator

1N
HOEEDIFICH (4)
k=1

which converges to Ef(g) for N — oco. Altogether, we can say that MCMC is
a method that allows to sample from f without knowledge of the normalizing
constant Z ;.

For two sets A, B C (2 the transition probability between A and B within
an ensemble distributed w.r.t. the density f and during one step of the
Markov chain is given by

k(4,B) = dx//K (z,y)f(z) dx dy. (5)

Discretization. Using this, we can easily discretize the Markov chain given

by K. This is done by coarse graining with an arbitrary box decomposition

of the phase space {2 into m disjoint sets By,..., B, C 2 with UB; = (2.

Based on this box decomposition, we introduce the new finite phase space
={Bi,..., By} and define the transition function K on £ via

K(By, Bi) = (B, By). (6)

The finite dimensional Markov chain defined by K again is reversible w.r.t.
its invariant density f given by f(Bg) =/ B, f(z)dz. Whenever f is unique

for K, f is also unique for K.

2.1 Propagator

In the following we want to understand the global behavior of a Markov chain
via the eigenmodes of its associated propagator P. This propagator is defined
in terms of the transition function K by

/ k(e y)ule) dz + r(y)uly). 1)

P describes the propagation of a phase space density with one step of the
Markov chain. One can show that the reversibility of K w.r.t. f implies that
its spectrum o (P) is real-valued. More exactly, we have o(P) C [—1,1], and
the largest eigenvalue is A = 1, for which f is an eigenfunction, i.e. Pf = f.
Assume that we order the eigenvalues of P w.r.t. their modulus, such that
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we have \; = 1 > A2 > .... Then, the approximation of expectation values
via the Markov chain X goes with a geometric rate:

1
|E(g Ewoﬁz z)| < C oY, (8)

where E®+ denotes the expectation over all realization of the chain starting
in z, € £2. The smaller |Az|, the faster a good sampling of the density f is
achieved. A Markov chain is called rapidly mizing whenever |As| < 1.

Recall that the spectrum o(P) consists of two disjoint parts: the discrete
spectrum containing all isolated eigenvalues of P with finite multiplicity, and
a continuous part, the so-called essential spectrum. In the case considered
herein, this essential spectrum is contained in some interval [—p, p] with p
being the supremum of the rejection function r over f2. We assume that
p < A2, which typically is the case; therefore an inference of the essential
spectrum with eigenvalues in the vicinity of A; = 1 will not occur in the
following.

Discretization of P. Next, assume that we discretize the Markov chain w.r.t.
some box decomposition By, ..., B, C {2 resulting in the transition function
K given in (6). Then the phase space is finite and the propagator P becomes
an m x m propagation matrix P which simply is the column stochastic matrix
with entries Py, = K(By, B;) = x(By, By).

2.2 Metastability

If A2 is close to Ay = 1, we often find that the reason for the undesirably
slow convergence is that the Markov chain remains for a long time in a
metastable region—also called mode or conformation—of the phase space,
before it moves on to another one. We will call a set 4 metastable or almost
invariant under our Markov chain, if the transition probability from A to
itself is close to one, i.e., if K(A, A) =~ 1

We herein will exploit the following observation concerning metastability:
If there are n eigenvalues close to Ay = 1 (including A; itself) and a signifi-
cant spectral gap to all remaining eigenvalues, then there also are n disjoint
metastable subsets and vice versa [22,27].

If this is the case, the chain is rapidly mixing within the corresponding
metastable subsets and the undesirably slow overall convergence results from
the rareness of transitions between these metastable sets.

The close connection between a separated cluster of dominant eigenvalues
and the existence of metastable subsets has another very important algorith-
mic consequence: it has been shown that one can identify the n metastable
subsets only on basis of the eigenvectors associated with the n dominant
eigenvalues [26,27]. This insight leads to a significantly general identification
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algorithm [5] used for the detection of biomolecular conformations. For il-
lustration of its key idea we introduce an appropriate example in Sect. 2.3
below.

2.3 Illustrative Example

Now and in Sect. 3, our construction will be illustrated by means of the n-
butane molecule. The United-Atoms representation [24] is used to set up a
separated Hamiltonian H(p,z) = T (p) + V(z), where the kinetic energy 7 (p)
depends only on the generalized momenta p and the potential energy V(z)
only on the coordinates z. Although the potential V is 12-dimensional, the
overall structure and dynamical properties of n-pentane is mainly determined
by its torsion angle § = 6(z). For means of illustration, we therefore choose
as our single conformational degree of freedom and select a decomposition of
the range [0, 2] of 8 into 23 disjoint boxes @y, C [0,27], k = 1,...,23. These
boxes define disjoint boxes

B,={zxeN: 0x)eoy}, k=1,...,23

which decompose the entire phase space 2 C R!2.

For the MCMC sampling we use hybrid Monte Carlo (HIMC) [2,6,26]
which has become a widely used method over the last decade for computing
expectation values (mainly thermodynamic observables) in molecular sys-
tems [1]. Tt perfectly fits into the framework of MCMC discussed herein.
Under weak assumptions on the potential, the canonical density given by
f = exp(—BV) is its unique invariant density. Let K denote the transition
function of HMC for the inverse temperature 8, and let K be its discretization
w.r.t. the box decomposition designed in the last paragraph. The propagation
matrix P associated with K is illustrated in Fig. 1, whereas the eigenvectors
of the three dominant eigenvalues are given in Fig. 2.

Fig. 2 also illustrates the key idea of the algorithm for identifying almost
invariant sets via these eigenvectors: For each state j = 1,...,23, we denote
by s; € {4, —1}3 the 3-tupel of signs of the jth components in each of the three
eigenvectors, the so-called sign combinations. The forth subfigure in Fig. 2
shows that there are only three different sign combinations, and that all states
J with the same s; belong to the same metastable set. Thus, the metastable
sets can be identified as sets of states with identical sign combination. This
idea can be generalized substantially, and is the key idea of the identification
algorithm presented in [5].

3 The Uncoupling Step

Assume now, that we are in a situation with n disjoint metastable subsets. If
it is true, that the chain is rapidly mixing within each metastable subset and
that the undesirably slow overall convergence results from the weak coupling
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Fig. 1. Left: Illustration of the entries of the propagation matrix P defined in the
text above. Intensity of entries due to logarithmic scale. Right: Ordered spectrum
of P with a cluster of three eigenvalues close to A = 1 and a significant gap to all
remaining ones.
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Fig. 2. Subfigure 1-3: Right eigenvectors of the three dominant eigenvalues of the
propagation matrix P shown in Fig. 1. Subfigure 4: The three metastable subsets
are characterized by three different sign combinations of these eigenvectors.

between this metastable sets, then uncoupling of the metastable sets should
lead to n rapidly mixing uncoupled chains.

3.1 Restricted Sampling

Assume that we know the n disjoint metastable sets 44, ..., A, of our Markov
chain, and that we now want to sample separately in each A;, for{ =1,...,n.
Then, for each | we define a restricted Markov kernel K; from K on A4; by
setting

Ki(z,y) = ki(z,y) + ri(z)d(z — y) 9)
with
q(z,y)a(z,y) if x #y and y € A
ki(z,y) = ,
0 otherwise
and

ri(w) =1 - / Fi(z,y) dy.
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Clearly, detailed balance still holds, so that K is again a reversible Markov
kernel. Now, let f; = 14,f be the restricted unnormalized density on Ay,
with 14 denoting the indicator function on A, i.e., La(x) =1if x € A and
14(z) = 0 otherwise. Then, under the assumption, that K is irreducible,
fi= fl /Z i is the unique invariant density of Kj.

We denote by P, the corresponding propagator of K. If we assume that
Ay is metastable and that it cannot be subdivided further into two or more
almost invariant sets, then we can state the following: The second largest
eigenvalue Ay of P is substantially less than 1, otherwise there would exist a
decomposition into two or more metastable subsets. As a consequence, due
to Ay < 1, the corresponding Markov chain Aj is rapidly mixing.

For the restricted Markov kernel K; the detailed balance condition (3)
still holds for all z,y € A;; therefore the density f; is a scalar multiple of
the correct global density f of the unrestricted Markov chain. Thus, we can
regain the global density via

K2}
F=>"mf (10)
=1
in terms of the local densities fi. Only the scalars m;, I = 1,...,n, are un-

knowns which represent the neglected coupling between the sets A;.

But before we go into the details of the coupling algorithm for the com-
putation of these weights m;, we want to give illustrations of the steps taken
so far.

3.2 Illustration of Restricted Sampling

For ease of presentation we will now illustrate this procedure in a finite di-
mensional situation. To this end, let P again denote the propagation matrix of
HMC for the simple n-butane molecule associated with the box discretization
given in Sec. 2.3. Let us denote the associated chain by X in the following.
Moreover, let A, As, Az be three disjoint subsets which we want to be un-
coupled. The resulting restricted sampling corresponds to the propagation
matrix Pty with entries

Py, ki€ A;forie{1,2,3} and k #1
Prostet = 0, ke AjleAjford,je{l,2,3} andi #
Pll'i'zpz'l,kZZEAj
igA;

Consequently, if we assume the boxes for each subset 4; to be in a successive
order, Prestr has block-diagonal form, i.e., the associated restricted sampling
chain consists of three uncoupled Markov chains. The three stochastic matri-
ces P, on the block diagonal of Prostr are the propagation matrices associated
with these uncoupled chains.
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Figure 3 illustrates the situation when the sets A; = {1,...,7}, 4y =
{8,...,16}, As = {17,..., 23} are good approximations of the three metastable
sets of X. The right hand part of Fig. 3 shows the ordered spectra of the
three uncoupled propagation matrices P;. We observe that the largest second
eigenvalues of all three P indeed are substantially less than 1, i.e., the three
restricted sampling chains in fact are rapidly mixing.

0 1
, 05 *
5 0 8
N 2 4 6
=] 1
10 s *
05 *,
-4 g o
15 1 . 2 468
20 B 0.5 **
[ W 7 0
0 5 10 15 20 2 4 6

Fig. 3. Left: Illustration of the entries of the propagation matrix Preser (as defined
in the text above) for a good choice of A1, Az, As. Intensity of entries due to loga-
rithmic scale. Right: Ordered spectrum of P.

Figure 4 shows the invariant density f of the unrestricted chain in com-
parison to the invariant densities f; of the three resulting restricted chains.
As a consequence of (10), we observe f/f; = const = 7; on each subset A;,
1=1,2,3.

: : 2
! !
0.2 0.2 ! ! 15
015 015 : !
! ! 1
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| | 05(
0.05 0.05 | i '
0L D o h 0
5 10 15 20 5 10 15 20 5 10 15 20

Fig. 4. Left: Invariant density f. Center: Invariant densities f;, I = 1,2,3 in the
three metastable sets A; (as in Fig. 3). Right: Quotients m; = f/f; in the three sets
A;.
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Figure 5 now illustrates bad approximations of the three metastable sets
of X, namely A, = {1,...,9}, A, = {10,...,15}, As = {16,...,23}. Again,
the right hand part of Fig. 3 shows the ordered spectra of the three uncoupled
propagation matrices P;. We observe that the largest second eigenvalue now
is much closer to 1, so that at least the first of the three restricted sampling
chains is slowly mixing.

0 3 1%?
*
05/ «
1 ***
*
5 0
= - 2 2468
1
10 3
05 *
*
* %
4 0
15 2 4 6
= — -5 1
*
05
20 " *”m
[ 0
0 5 10 15 20 2 4 6 8

Fig. 5. Left: Illustration of the entrics of the propagation matrix Prest: for a bad
choice of Ai, A2, As. Intensity of entries due to logarithmic scale. Right: Ordered
spectrum of P.

3.3 Metastable Sets in Many Dimensions

In Sects. 2.2 and 2.3 we saw how to identify the metastable sets of Markov
chains with low-dimensional and/or finite state space via dominant eigenvec-
tors of the associated propagator. In this section we will show how to deal
with high-dimensional state spaces. We will see that one may extract good
approximations of the metastable subsets of a certain Markov chain X (if
they exist) from good X-samplings of its invariant density f.

This seems to be a vicious circle: we want to use good approximations of
the metastabe sets to find faster sampling strategies by uncoupling-coupling
techniques, but we also want to start the construction of such good approx-
imations by assuming that some reliable sampling already is available. In
Sec. 3.4 below, we will see that we are able to avoid this supposed circle by
exploiting an appropriate annealing strategy.

Suppose that {xy }x=1,...,r is the realization of a Markov chain X acting on
the state space £2 and corresponding to a propagator P. In order to identify
the metastable sets we have to compute the dominant eigenvectors of P, and
therefore discretize P. Hence, we need an appropriate box discretization of
2 where the number of boxes should not be so large that it prevents us
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from computing the dominant eigenvectors of the discretization matrix P of
P. In order to design such a box discretization we first identify the cluster
structure of the sampling, i.e., we cluster {z4} into a sufficiently large number
of similarity clusters. This can be done, e.g., via the algorithm presented in
[12] using self-organizing maps. These clusters define our discretization boxes
such that the algorithm works as follows:

(1) Use the techniques presented in [12] to cluster {zy}r=1,... z into M sim-
ilarity clusters Ci,...,Cup. (M need not be defined in advance, but
emerges during the algorithmic process.)

(2) Assemble the discretization matrix P € RM*M of P with entries

#{.’L’j € C; and Tjt1 € Ck}
#{z; € Ci}

Pk:l:

(3) Compute metastable sets of P via its dominant eigenvectors using the
algorithm presented in [5].

3.4 Annealing

If we start the simulation with a Markov chain for the normalized density
f of interest, it will typically get trapped in one of its metastable sets—
which is exactly what we want to avoid. One way out of this undesirable
occurrence is to exploit the embedding of the unnormalized density f out of
afamily of densities f (8). Here § is the embedding parameter, e.g., the inverse
temperature in the usual case of the Gibbs densities f(8) = exp(—8V). Let
8. be such that the density of interest is f = f (8+)- Correspondingly, we have
a family of Monte Carlo Markov chains X (8), and a family of propagation
operators P(3).

Consider now the special case of the inverse temperature § and f 8 =
exp(—pFV): By increasing temperature, i.e., decreasing 3, the density f (8+)
transforms into smoother ones with less metastable regions. This means that
the second eigenvalue A2(8) of P(8) moves away from the largest eigenvalue
A1(B) = 1, i.e., the spectral gap increases with decreasing 3, and we get
better and better convergence properties for the chains X ().

For reasonably small 8 (but sufficiently bounded away from S = 0), the
chain X(8) will still exhibit almost invariant sets with a significantly reduced
degree of metastability compared to that of the chain X(f8.). However, the
almost invariant sets of X(8) will be reasonable approximations of almost
invariant sets of X(8.) [27]. This is due to the fact that the form of the
dominant eigenvectors of the P(3) is only mildly sensitive to changes in 8
(in contrast to the drastic effect of such changes on A2(53)) [25].

We can nicely see this when returning to the n-butane example of Sect. 2.3.
Let the inverse temperature 8 be associated with a temperature of 300 K.
Based on simulation of X(3), the identification algorithm explained in Sect. 3.3
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results in the almost invariant sets 41, A», A3 already shown in Fig. 2. Let
X; denote the restricted chains associated with the densities 14, f(84), j =
1,2,3, for the low temperature 8, ~ 100K of interest. Then, the second
eigenvalues A; of the propagators associated with the X; are

i 1 2 3
; 0.328 0.372 0.307

which illustrates that these restricted chains are rapidly mixing as desired. In
comparison, an estimate for the second eigenvalue of the unrestricted chain
X (8.) yields A2 (8.) > 0.999, indicating extremely slow mixing.

4 The Coupling Step

In the coupling step we will show that it is possible to regain information
about a global density f = >, mx fr in terms of densities f, without sam-
pling f itself, by setting up a coupling matrix C' with 7 as its stationary
distribution. This together with the decomposition from the uncoupling step
allows us to formulate the algorithmic hierarchical annealing scheme in Sec. 5.

4.1 The Coupling Matrix C

Now suppose that arbitrary unnormalized densities fo, iy fn are given and
that we are interested in the global unnormalized density
A n ~
F=> 1. (11)
k=0

For some set A C 2 we introduce the notation u(4) = [, f(z)dz. To obtain

~

information about the density f corresponding to £, it is sufficient to know the
ratios of normalizing constants m, = Zp, /Z 7> because then we can reconstruct
f from the fi’s due to (11) by

~

. “~Zj, e f
Zﬂ'kfk: Z_f}jZ_A:Z:f' (12)
k=0 k=0 "7 Tk 7

Let us denote by A; = supp( fk) the support of the densities fk in the
state space 2. Furthermore, let us assume in the following that each A; is

connected to any A; in the sense that there exists a sequence of sets
A=A, A, AL AL = Aj, such that u(A;, N Alr+1) > 0, (13)

for r = 1,...,k — 1. This condition obviously is not satisfied if we assume
the fk to be the restricted densities of Sect. 3.1. However, it makes sense in
the context of annealing, e.g., with fo = f(8), and f; = 14, f(3.), with 4,
j=1,...,n being the almost invariant sets of X(8), cf. Sect. 3.4. Now, the
densities fo, . fn automatically satisfy our above conditions, in particular
the connectivity condition (13).
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Definition of the Coupling Matriz. Returning to the general case, we need to
design an algorithm which allows to compute the weights 7 in (12) (or at
least approximations of them) without directly referring to Z ;- We therefore
define the coupling matriz C' = (¢;;) € Mat,41xnt1 by

Z, Zy . ¢
L 226 pmip (1,%) for i # j and p(4; N A;) >0

ntl  Zg ijfi
Cij =40 fori#jand u(A;nA4;)=0 (14
1-— Ezzo(k#) Cik else

where ¢;; = 14,n4; denotes the common support of the densities f, and fj.

Properties of the Coupling Matriz. Obviously, C is a stochastic matrix, be-
cause for i # j we have 0 < ¢;; < 1/(n + 1), while due to the diagonal entries
the sum of each row is 1. The Markov chain corresponding to C' is also ape-
riodic, simply because ¢;; > 1/n + 1 for each diagonal entry. Condition (13)
guarantees that for any two i,j € {0,...,n} there is a path from the state i
to the state j in C', which makes C' irreducible in addition. The key point in
the construction of C' is that

1

(101 0) = By )

is the unique stationary distribution due to the aperiodicity and irreducibility
of C'. This follows immediately from the detailed balance condition

Zy. .}, Z, i Z, i Z, i
m —?{fl min (1,—Z¢“fJ> = —gﬂij min (1,—Z¢”ﬁ>, (15)

fi bi fi I3 ®jifs

which moreover shows that C is reversible.

Expectation Values. Suppose that we can compute expectation values for the
f&’s, e.g., by restricted sampling. Moreover assume that we know the correct
weights 7w of f =), 7 fi via the stationary distribution of C'. Then, we are
able to compute expectation values w.r.t. f, which are now given by

Ef(g) = By, s (9) = 3 / o(#) fi () da. (16)
k A

Thus, the remaining bottleneck now is to find an algorithm for efficiently
computing an approximation C' of C'. Therein, we will have to approximate
the ratio of normalizing constants, which as opposed to approximation of the
normalizing constants itself can at least in principle be computed efficiently
(see Sec. 4.2). In fact, like in the Metropolis algorithm we replace a direct
computation of Z; by the computation of ratios of normalizing constants
between the Z i ’s.
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4.2 Bridge Sampling

We herein continue to use the notation of the last subsection. In the following,
let ¢ and j always be two indices satisfying p(.4; N A;) > 0. Then we have to
approximate the ratio of normalizing constants Z i fi 1Z 65t We could try to

sample f; and fj directly (with good convergence rates both) and compute the
approximation from the generated sampling data. Unfortunately, because of
the high dimensionality of {2, the overlap between these two samplings would
in general be to small to extract a statistically reliable approximation of the
ratio of normalizing constants.

Therefore, we have to use so-called bridge densities to compute the desired
ratios of normalizing constants [14,21]. A generic choice for a bridge density
on the set A; N A; is given by

fij = U]-AiﬂAj fz + (1 - U)lAiﬂAJ‘ fj (17)

for some ¢ € [0, 1]; however, more elaborate bridge densities are in use de-
pending on the specific application. By mixing both densities into f;;, we
expect to satisfy in particular:

(i) The Markov chain A;; corresponding to f;; is rapidly mixing. This as-
sumption is justified whenever we can guarantee rapid mixing for the
chains X; and X; associated with f; and f;.

(i) A simulation run of X;; allows a statistical reasonable reweighting to
the densities f; and f;; this presupposes that all important parts of the
densities f; and f; got sampled by the simulation. This means that the
reweighted data allow to approximate Z 6i f; /Z bisfi-

4.3 Annealing Example

Let us again return to the situation with fo = £(3), and fj = 1y, F(8.), with
A;,j=1,...,m being the almost invariant sets of X'(3), cf. Sect. 3.4. Suppose
that 3, is the inverse temperature of interest, and that the inverse temper-
ature 8 < f. gives us a chain X (8) with sufficient convergence properties.
Since now f = Zj fj = f(8) + f(B.) by construction, the last m weights 5
in (12) satisfy

where Zg and Zg, denotes the normalizing constants of F(8) and £(8.). So,
the reweighted coefficients

o= 71']-/271']- (18)
=1
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m
are the correct weighting factors for the density f(8.) = >_ =} f; of interest.
Jj=1
By construction, we have u(A4; N 4;) >0onlyfori=0and j =1,...,m
or the reverse case. Since ¢g; = ¢jo = 14,, we have to approximate the ratios
Zgoido /Z b0fs = ZlAj Wl 4, Thus, the required bridge densities foj combine

the chain X(® with the restricted chains X; associated with f;, which all
are rapidly mixing, since § was assumed to be small enough and the fj’s are
restricted to the almost invariant sets A;.

For the n-butane example of Sec. 2.3 a sampling for 3 given by a temper-
ature of 300 K results in the three almost invariant sets already illustrated in
Fig. 4. If we are interested in 8, given by a temperature of 100 K, the bridge
sampling results in the following approximate 4 x 4 coupling matrix:

0.9939 0.0001 0.0058 0.0001

G — 0.2500 0.7500 0 0
~ | 0.2500 0 0.7500 0 ’
0.2500 0 0 0.7500

with the stationary distribution
7 = (0.97637,0.00054, 0.02254, 0.00056)" ,
which implies due to (18):
(7/7,75,73) = (0.0228,0.9535,0.0237).

Let {ng ok = 1,..., Ny} denote the sampling of the bridge densities fo;,
j = 1,23, and let {azj,k = 1,...,N;} denote the reweighting factors of
the fo;-sampling to f;. Then, due to (16), expectation values of a function g
w.r.t. the density f(8.) = f(ﬁ*)/Zf(ﬂ*) of interest can be approximated via

N;

Eren) ~ D 7 [ Sl g (al) ], (19)
j=1 1

=

If we use this to approximate the probabilities p; = Ef(g,y(14,) = [ A F(Bs) dz
to be in the sets A; for the n-butane example, we get

p = (0.0228,0.09535,0.0237),
which we have to compare with the exact values
p = (0.0240, 0.9520, 0.0240),

which can be computed analytically in this simple example.
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a) A,
A1 A7
Ag =1 Aj
Ay
As As

Fig. 6. a) Schematic plot of a three level hierarchical decomposition. An initial
sampling of fo decomposes the state space 2 = Ay into two subsets A; and Ao,
which get further subdivided into {As, A4} and {As, As, Ar}. The three levels are
related to an annealing process; the top level is related to fp, the intermediate
level to 81 > Bo, and the ground level to the inverse temperature 82 = 8, > B1 of
interest. b) The same subdivision as in a), but now represented as a graph, where
nodes correspond to the sets Ap. As an example, the density ¢a7f2 corresponds
to the hatched part of As; in UCMC neither ¢27f2 nor fr is sampled, but rather
the bridge density fa7, which sufficiently encompasses the important parts of ¢a7 fo
and fr. Additionally, the tree structure of the graph guarantees that the coupling
matrix C is irreducible.
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5 Hierarchical Annealing

Why should we restrict the algorithm to just two temperatures and only one
decomposition of the phase space in almost invariant subsets? As already
emphasized we have to expect that there is a hierarchy of almost invariant
sets. Moreover, it will be much easier to choose “good” initial “high” tem-
peratures, if we allow for a hierarchy of temperatures ranging from the high
initial temperature down to the probably low temperature of interest. The
presentation of all prior steps has been general enough to allow for a recur-
sive, hierarchical k-level generalization of the two-level approach explained
in the annealing example in the previous section. The resulting concept of
“Hierarchical UCMC?” is illustrated and explained in detail in Fig. 6.

In order to control the statistical error of the required samplings of the
bridge densities, we have to control the simulation length of each sampling.
Since appropriate simulation lengths may vary drastically, we use the con-
vergence estimator described in [13,15] to automatically stop the simulation.
For this estimator, multiple realizations of a Markov chain X}, are generated
to compute estimates depending on the variances between these realizations.

In view of the various samplings of bridge densities the hierarchical ap-
proach has another benefit: Parameters for a bridge density can be directly
extracted from its previous density in the hierarchy. Therefore, there is no
need to perform preliminary simulations to adjust parameters as is typically
the case for other techniques using extended ensembles [1,18]. Because we
start UCMC with a standard Monte Carlo simulation at a sufficiently high
temperature, the uncoupling step of the algorithm runs fully automatic until
the density of interest is reached. After that, the approximation C of the cou-
pling matrix C' is obtained from the uncoupling step by pure data analysis;
the corresponding reweighting formulas and the approximation of ratios of
normalizing constants can be found in [9].

6 Numerical Example

Biomolecules are an important application class of MCMC methods in sta-
tistical physics. There exists a wide range of MCMC algorithms, which are
trying to tackle the problems and challenges of biomolecular systems [1].
Biomolecules are also well suited for the UCMC approach: They possess many
conformational substates which can be clustered into only a few, extremely
metastable ones [11]. In other words, metastable conformations consist them-
selves out of less metastable subsets. As an illustration of the hierarchical de-
composition of conformational substates, we here apply UCMC to n-pentane.
This molecule is still far below the complexity of proteins or nucleic acids,
but the algorithmic properties can be discussed in more detail. We have used
the all-atom Merck force field [16] for the energy representation which we
also use for simulations on biomolecules. The n-pentane molecule consists of
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5 C-atoms and 12 H-atoms, which results in £2 C R5!. The clustering of data
by means of self-organizing box maps [12] is restricted to the two torsion
angles defined by C-atoms only. To make use of the independence between
all emerging Markov chains, all Markov chains on each level of the hierarchy
run in parallel. For the initial sampling we use HMC [2,6] whereas the bridge
densities are sampled with adaptive temperature IMC [10] (ATHMC), an
enhancement of HMC where a bridge density between two adjacent temper-
atures is sampled by adapting the temperature of each HMC step according
to the potential energy.

We illustrate UCMC by a three level hierarchy at temperatures 400 K,
200K and 100K corresponding to inverse temperatures 8y, 51 and 8y = S,
respectively. The initial sampling is started at 400 K with state space 49 = (2,
a temperature at which HMC overcomes all conformational barriers. Yet, if we
perform a clustering we observe the presence of metastable sets. In Table 1 the
eigenvalues of the hereby discretized propagation operator P(8g) are given.

Table 1. Eigenvalues of the discretized operator P(3) at different temperatures.
In addition to the initial sampling at 400 K, we also give the spectra from long
simulation runs of 2x 10° steps at 200 K and 100 K. Note, that the spectrum at 200 K
clearly indicates the effect of insufficient sampling due to increased metastability,
which get even worse at 100 K.

400K 200K 100K
A1 1.0000 1.0000 1.0000
Az 0.9935 0.9998 0.9999
A3 0.9925 0.9997 -0.2455
A4 0.9914 0.9997 -0.2206
As 0.9913 0.9994 0.2161
e 0.9859 0.9992 -0.1878
A7 0.9855 0.2425 0.1766
As 0.9254 0.1919 0.1716
Ao 0.9009 0.1541 0.1670
A10 0.3380 -0.1494 0.1499

Figure 7 shows the bridge samplings in 7 metastable sets A;,..., A7 ob-
tained from the identification algorithm [5], where the spectral gap was de-
tected between A; = 0.9855 and Az = 0.9254. Note that the eigenvalues
As = 0.9254 and Ag = 0.9009 together with the extremely large spectral gap
beyond Ag already indicates the emergence of two further metastable sets.
Actually, these two metastable sets got uncoupled on the next level of the
hierarchy (see Figure 7). This gives us the sets As,..., A1g, in which again
bridge densities were restarted.

Having completed the uncoupling step, an approximation C' € Mati7x17
of the coupling matrix C' by data analysis was set up, which gave us the
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,=0.2371 ,=0.3324 4, =03614 4,=0536

1, =0.9925 %, =0.9841 ,=0.5358

90 90 90 90 90 90
0 ‘ 0 0 0 0 0
-90 ro0 90 90 90 ro0
L.
-90 0 90 -90 0 90 -90 0 90 -90 0 90 -90 0 90 -90 0 90 -90 0 90

Fig. 7. Initial uncoupling of Ao into 7 metastable sets A1,..., A7 as a projection
of the two torsion angles. The data points shown are the sampling points from the
restricted Markov chains corresponding to the bridge densities between 400 K and
200 K, whereas the number above each set denotes the 2nd eigenvalue of the corre-
sponding propagation operator. The sets As and As which possess 2nd eigenvalues
close to one get further uncoupled into two sets each—their 3rd eigenvalue is 0.3591
and 0.3395, respectively—for the next hierarchical level.

invariant density 7. Exemplarily for the coupling part of the algorithm, in
Fig. 8 reweightings of the bridge density fy4 to the densities fy and fy are
shown. Finally, using (19) the restriction #* = (g, ..., 717) of the invariant
density # of C' enables us to compute any desired expectation values w.r.t.

f(B)-

0.05¢
= —
’_17" Q;M i
0.04f i oo [040
1 o
N 4
i 1
0 .
£0.03- il
5 '-.
= :
£0.02 !
0.01+
0

150

Fig. 8. Reweighting of the bridge density fos to the densities ¢osafo and fs. The
reweighted densities show the typical gaussian shape. Additionally, the overlap
between fo4 with each of the reweighted densities indicates a statistical reliable
computation of the ratio of normalizing constant Z,,  /Z, . s .

Due to a symmetry in the Hamiltonian we can derive symmetric sets in
the state space by discretizing each torsion angle into three boxes of 120°. If
we denote by s;; the probability to be in the corresponding 120° x 120°-box,
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S = (si5) possesses the following symmetric structure:

dbc
S=1]babd
cbd

Actually, these 9 sets also reflects roughly the 9 metastable sets As, ..., Aig
found by UCMC. Using (19) to get an approximation S of S at 100K yields

3.97x 1077 0.0123 4.09 x 1074
Suomc = 0.0118 0.9542 0.0117
2.50 x 107 0.0095 1.57 x 1077

7

which is in good agreement with S, whereas the direct HMC simulation
at 200K and 100K from Table 1 results in

0 0.098 0 / 0 0 0
S(B1) = 0.168 0.558 0.104 and S(8,)=100.6010 |,
817 x 1073 0.065 0 00.399 0

respectively, that once more demonstrates the insufficient samplings already
observed in the spectra from Table 1.

Regarding the small probabilities to be within the metastable sets 11, §33, 513
and §3; of n-pentane, one appropriate strategy to bound the number of
metastable sets for larger molecules would be to skip identified metastable
sets during annealing whenever the probability to be in such a set is below
a given threshold. However, we have seen that an uncoupling into all local
minima only occurs if we proceed towards very low temperatures. For larger
molecules one is normally interested in temperatures around 300 K where one
would expect a reasonably small number of metastable sets composed of less
metastable subsets.

Conclusion

In this article, we have worked out details of a hierarchical uncoupling-
coupling Monte Carlo (UCMC) method. In a first step, we investigated the
question of how to uncouple a reversible Markov chain hierarchically by de-
composing its state space into metastable sets. In a second step, we illustrated
the algorithmic scheme by applying it to the simple n-pentane problem, where
everything is well-understood and which therefore can be used for testing. In
this example, UCMC has shown to allow fast samplings in metastable sets
as well as a correct reweighting. For the decomposition of the state space
in the example, UCMC has been combined with self-organized box maps as
presented also in this volume.
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As a next step, we aim at applying UCMC to larger molecules. However,

before we can take this step, we still need to gain a deeper understanding of
the combination of UCMC with decompositions in higher dimensional state
spaces.
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