8,234 research outputs found
Developing an intervention to improve reading comprehension for children and young people with autism spectrum disorders
Aim: A substantial proportion of children and young people with autism demonstrate accurate word reading
but struggle to understand the content of what they are reading. There is an urgent need for further research
in this area to enable educational professionals to implement evidence-based reading interventions. / Method/Rationale: This study analyses the effectiveness of an intervention designed to improve the reading
comprehension of young people with autism and reading comprehension diffculties (mean age 13 years,
6 months). The intervention was delivered twice a week over a period of six weeks. / Findings: The results indicate that the intervention group (N=15) demonstrated a signifcantly greater
increase in their reading comprehension than a ‘treatment as usual’ control group (N=14), showing an
average of three years’ improvement in their reading comprehension. Semi-structured interviews with
participants indicated that many demonstrated a shift in their approach to reading, with a greater focus on
comprehension and an awareness of transferring the skills they had learnt to other areas of the curriculum.
Participants also identifed that the intervention supported their speaking and listening skills. / Limitations: The small size of the sample in this study limits the generalisation of the fndings.
The robustness of the fndings would be increased by including long-term outcome measures. / Conclusions: These fndings present important implications for professionals working with young people and
suggest that school-based reading interventions may be effective at developing the reading comprehension of
individuals with autism
Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation
Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co-culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in-depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre-clinical in vitro test-bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies
Literature-based discovery of diabetes- and ROS-related targets
Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation
Can solubilizing excipients be used with the rat BATA model to assess the taste of poorly water-soluble drugs?
The space group classification of topological band insulators
Topological band insulators (TBIs) are bulk insulating materials which
feature topologically protected metallic states on their boundary. The existing
classification departs from time-reversal symmetry, but the role of the crystal
lattice symmetries in the physics of these topological states remained elusive.
Here we provide the classification of TBIs protected not only by time-reversal,
but also by crystalline symmetries. We find three broad classes of topological
states: (a) Gamma-states robust against general time-reversal invariant
perturbations; (b) Translationally-active states protected from elastic
scattering, but susceptible to topological crystalline disorder; (c) Valley
topological insulators sensitive to the effects of non-topological and
crystalline disorder. These three classes give rise to 18 different
two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route
for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic
Topological Crystalline Insulators in the SnTe Material Class
Topological crystalline insulators are new states of matter in which the
topological nature of electronic structures arises from crystal symmetries.
Here we predict the first material realization of topological crystalline
insulator in the semiconductor SnTe, by identifying its nonzero topological
index. We predict that as a manifestation of this nontrivial topology, SnTe has
metallic surface states with an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110} and {111}. These surface states form a
new type of high-mobility chiral electron gas, which is robust against disorder
and topologically protected by reflection symmetry of the crystal with respect
to {110} mirror plane. Breaking this mirror symmetry via elastic strain
engineering or applying an in-plane magnetic field can open up a continuously
tunable band gap on the surface, which may lead to wide-ranging applications in
thermoelectrics, infrared detection, and tunable electronics. Closely related
semiconductors PbTe and PbSe also become topological crystalline insulators
after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5
pages, 4 figure
Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1
<p><b>Background:</b> The three sub-species of <i>Trypanosoma brucei</i> are important pathogens of sub-Saharan Africa. <i>T. b. brucei</i> is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. <i>T. b. rhodesiense</i> and <i>T. b. gambiense</i> are able to resist lysis by TLF. There are two distinct sub-groups of <i>T. b. gambiense</i> that differ genetically and by human serum resistance phenotypes. Group 1 <i>T. b. gambiense</i> have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 <i>T. b. gambiense</i> are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (<i>HpHbR</i>)) gene. Here we investigate if this is also true in group 2 parasites.</p>
<p><b>Methodology:</b> Isogenic resistant and sensitive group 2 <i>T. b. gambiense</i> were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the <i>HpHbR</i> gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to <i>T. b. brucei</i>. Both resistant and sensitive group 2, as well as group 1 <i>T. b. gambiense</i>, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.</p>
<p><b>Conclusions:</b> Our data indicate that, despite group 1 <i>T. b. gambiense</i> avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 <i>T. b. gambiense</i> is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 <i>T. b. gambiense</i> variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of <i>HpHbR</i>. Thus there are differences in the mechanism of human serum resistance between <i>T. b. gambiense</i> groups 1 and 2.</p>
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
- …
