15 research outputs found

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    Get PDF
    Purpose: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. Methods: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. Results: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. Conclusion: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration

    Social media and sensemaking patterns in new product development: demystifying the customer sentiment

    Get PDF
    Artificial intelligence by principle is developed to assist but also support decision making processes. In our study, we explore how information retrieved from social media can assist decision-making processes for new product development (NPD). We focus on consumers’ emotions that are expressed through social media and analyse the variations of their sentiments in all the stages of NPD. We collect data from Twitter that reveal consumers’ appreciation of aspects of the design of a newly launched model of an innovative automotive company. We adopt the sensemaking approach coupled with the use of fuzzy logic for text mining. This combinatory methodological approach enables us to retrieve consensus from the data and to explore the variations of sentiments of the customers about the product and define the polarity of these emotions for each of the NPD stages. The analysis identifies sensemaking patterns in Twitter data and explains the NPD process and the associated steps where the social interactions from customers can have an iterative role. We conclude the paper by outlining an agenda for future research in the NPD process and the role of the customer opinion through sensemaking mechanisms

    Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy

    Get PDF
    The metaverse has the potential to extend the physical world using augmented and virtual reality technologies allowing users to seamlessly interact within real and simulated environments using avatars and holograms. Virtual environments and immersive games (such as, Second Life, Fortnite, Roblox and VRChat) have been described as antecedents of the metaverse and offer some insight to the potential socio-economic impact of a fully functional persistent cross platform metaverse. Separating the hype and “meta…” rebranding from current reality is difficult, as “big tech” paints a picture of the transformative nature of the metaverse and how it will positively impact people in their work, leisure, and social interaction. The potential impact on the way we conduct business, interact with brands and others, and develop shared experiences is likely to be transformational as the distinct lines between physical and digital are likely to be somewhat blurred from current perceptions. However, although the technology and infrastructure does not yet exist to allow the development of new immersive virtual worlds at scale - one that our avatars could transcend across platforms, researchers are increasingly examining the transformative impact of the metaverse. Impacted sectors include marketing, education, healthcare as well as societal effects relating to social interaction factors from widespread adoption, and issues relating to trust, privacy, bias, disinformation, application of law as well as psychological aspects linked to addiction and impact on vulnerable people. This study examines these topics in detail by combining the informed narrative and multi-perspective approach from experts with varied disciplinary backgrounds on many aspects of the metaverse and its transformational impact. The paper concludes by proposing a future research agenda that is valuable for researchers, professionals and policy makers alike

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain.

    Get PDF
    We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP

    Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson's disease onset

    No full text
    Parkinson's disease (PD), a common neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and their terminations in the basal ganglia, is thought to be related to genetic and environmental factors. Although the pathophysiology of PD neurodegeneration remains unclear, protein misfolding, mitochondrial abnormalities, glutamate dysfunction and/or oxidative stress have been implicated. In this study, we report that a rare T1492G variant in GLUD2, an X-linked gene encoding a glutamate dehydrogenase (a mitochondrial enzyme central to glutamate metabolism) that is expressed in brain (hGDH2), interacted significantly with age at PD onset in Caucasian populations. Individuals hemizygous for this GLUD2 coding change that results in substitution of Ala for Ser445 in the regulatory domain of hGDH2 developed PD 6–13 years earlier than did subjects with other genotypes in two independent Greek PD groups and one North American PD cohort. However, this effect was not present in female PD patients who were heterozygous for the DNA change. The variant enzyme, obtained by substitution of Ala for Ser445, showed an enhanced basal activity that was resistant to GTP inhibition but markedly sensitive to modification by estrogens. Thus, a gain-of-function rare polymorphism in hGDH2 hastens the onset of PD in hemizygous subjects, probably by damaging nigral cells through enhanced glutamate oxidative dehydrogenation. The lack of effect in female heterozygous PD patients could be related to a modification of the overactive variant enzyme by estrogens

    HLA-DPB1 supertype-associated protection from childhood leukaemia: relationship to leukaemia karyotype and implications for prevention

    No full text
    Most childhood B cell precursor (BCP) acute lymphoblastic leukaemia (ALL) cases carry the reciprocal translocation t(12;21)(p13;q22) (similar to 25%), or a high hyperdiploid (HeH) karyotype (30%). The t(12;21) translocation leads to the expression of a novel fusion gene, TEL-AML1 (ETV6-RUNX1), and HeH often involves tri- and tetrasomy for chromosome 21. The presence of TEL-AML1+ and HeH cells in utero prior to the development of leukaemia suggests that these lesions play a critical role in ALL initiation. Based on our previous analysis of HLA-DP in childhood ALL, and evidence from in vitro studies that TEL-AML1 can activate HLA-DP-restricted T cell responses, we hypothesised that the development of TEL-AML1+ ALL might be influenced by the child's DPB1 genotype. To test this, we analysed the frequency of six HLA-DPB1 supertypes in a population-based series of childhood leukaemias (n = 776) classified by their karyotype (TEL-AML1+, HeH and others), in comparison with newborn controls (n = 864). One DPB1 supertype (GKD) conferred significant protection against TEL-AML1+ ALL (odds ratio (OR), 95% confidence interval (95% CI): 0.42, 0.22-0.81; p < 0.005) and HeH ALL (OR; 95% CI: 0.44, 0.30-0.65; p < 0.0001). These negative associations were almost entirely due to a single allele, DPB1*0101. Our results suggest that DPB1*0101 may afford protection from the development of TEL-AML1+ and HeH BCP ALL, possibly as the result of a DP-restricted immune response to BCP ALL-associated antigen(s), the identification of which could have important implications for the design of prophylactic vaccine
    corecore