18 research outputs found

    The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease

    Get PDF
    BackgroundStrongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.Principal FindingsHere we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified.ConclusionsOverall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite

    Profiles of Small Non-Coding RNAs in Schistosoma japonicum during Development

    Get PDF
    Schistosomiasis, a debilitating disease, caused by agents of the genus Schistosoma afflicts more than 200 million people worldwide. Schistosomes could serve as an interesting model to explore gene regulation due to its evolutional position, complex life cycle and sexual dimorphism. We previously indicated that sncRNA profile in the parasite S. japonicum was developmentally regulated in hepatic and adult stages. In this study, we systematically investigated mircoRNA (miRNA) and endogenous siRNA (endo-siRNA) profile in this parasite in more detailed developmental stages (cercariae, lung-stage schistosomula, separated adult worms, and liver tissue-trapped eggs) using high-throughput RNA sequencing technology. We observed that the ratio of miRNAs to endo-siRNAs was dynamically changed throughout different developmental stages of the parasite. MiRNAs were expressed dominantly in cercariae, while endo-siRNAs accumulated in adult female worms and hepatic eggs. We demonstrated that miRNAs were mostly derived from intergenic regions whereas siRNAs were mostly derived from transposable elements. We also annotated miRNAs and siRNAs with stage- and gender- biased expression. Our findings would facilitate to understand the gene regulation mechanism of this parasite and discover novel targets for anti-parasite drugs

    A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications

    Get PDF
    Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite

    Identification of Cytauxzoon felis antigens via protein microarray and assessment of expression library immunization against cytauxzoonosis

    Get PDF
    Abstract Background Cytauxzoonosis is a disease of felids in North America caused by the tick-transmitted apicomplexan parasite Cytauxzoon felis. Cytauxzoonosis is particularly virulent for domestic cats, but no vaccine currently exists. The parasite cannot be cultivated in vitro, presenting a significant limitation for vaccine development. Methods Recent sequencing of the C. felis genome has identified over 4300 putative protein-encoding genes. From this pool we constructed a protein microarray containing 673 putative C. felis proteins. This microarray was probed with sera from C. felis-infected and naïve cats to identify differentially reactive antigens which were incorporated into two expression library vaccines, one polyvalent and one monovalent. We assessed the efficacy of these vaccines to prevent of infection and/or disease in a tick-challenge model. Results Probing of the protein microarray resulted in identification of 30 differentially reactive C. felis antigens that were incorporated into the two expression library vaccines. However, expression library immunization failed to prevent infection or disease in cats challenged with C. felis. Conclusions Protein microarray facilitated high-throughput identification of novel antigens, substantially increasing the pool of characterized C. felis antigens. These antigens should be considered for development of C. felis vaccines, diagnostics, and therapeutics
    corecore