1,254 research outputs found

    Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

    Get PDF
    Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations

    Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness

    Get PDF
    Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug

    Dietary n-3 fatty acids have suppressive effects on mucin upregulation in mice infected with Pseudomonas aeruginosa

    Get PDF
    International audienceMucin hypersecretion and mucus plugging in the airways are characteristic features of chronic respiratory diseases like cystic fibrosis (CF) and contribute to morbidity and mortality. In CF, Pseudomonas aeruginosa superinfections in the lung exacerbate inflammation and alter mucus properties. There is increasing evidence that n-3 polyunsaturated fatty acids (PUFAs) exhibit anti-inflammatory properties in many inflammatory diseases while n-6 PUFA arachidonic acid (AA) favors inflammatory mediators such as eicosanoids prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) that may enhance inflammatory reactions. This suggests that n-3 PUFAs may have a protective effect against mucus over-production in airway diseases. Therefore, we hypothesized that n-3 PUFAs may downregulate mucins expression. We designed an absolute real-time PCR assay to assess the effect of a 5-week diet enriched either with n-3 or n-6 PUFAs on the expression of large mucins in the lungs of mice infected by P. aeruginosa. Dietary fatty acids did not influence mucin gene expression in healthy mice. Lung infection induced an increase of the secreted gel-forming mucin Muc5b and a decrease of the membrane bound mucin Muc4. These deregulations are modulated by dietary fatty acids with a suppressive effect of n-3 PUFAs on mucin (increase of Muc5b from 19-fold up to 3.6 x 10(5)-fold for the n-3 PUFAs treated group and the control groups, respectively, 4 days post-infection and decrease of Muc4 from 15-fold up to 3.2 x 10(4)-fold for the control and the n-3 PUFAs treated groups, respectively, 4 days post-infection). Our data suggest that n-3 PUFAs enriched diet represents an inexpensive strategy to prevent or treat mucin overproduction in pulmonary bacterial colonization

    Variability of RNA quality extracted from biofilms of foodborne pathogens using different kits impacts mRNA quantification by qPCR

    Get PDF
    The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.AF and JCB acknowledge the financial support of individual grants SFRH/BD/62359/2009 and SFRH/BD/66250/2009, respectively. The authors acknowledge the gift of bacterial strains to Joana Azeredo and Maria Olivia Pereira.

    CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE14o-) cells

    Get PDF
    BACKGROUND: Recognition of repeat unmethylated CpG motifs from bacterial DNA through Toll-like receptor (TLR-9) has been shown to induce interleukin (IL)-8 expression in immune cells. We sought to investigate the role of CpG oligodeoxynucleotides (ODN) on a human bronchial epithelial cells. METHODS: RT-PCR and Western blot analysis were used to determine expression of TLR-9 in human bronchial epithelial cells (16HBE14o-). Cells were treated with CpG ODN in the presence or absence of IL-1β and IL-8 protein was determined using ELISA. In some cases cells were pretreated with chloroquine, an inhibitor of TLR-9 signaling, or SB202190, an inhibitor of the mitogen activated protein kinase p38, prior to treatment with IL-1β and CpG. TLR9 siRNA was used to silence TLR9 prior to treatment with IL-1β and CpG. IκBα and p38 were assessed by Western blot, and EMSA's were performed to determine NF-κB activation. To investigate IL-8 mRNA stability, cells were treated with IL-1β in the absence or presence of CpG for 2 h and actinomycin D was added to induce transcriptional arrest. Cells were harvested at 15 min intervals and Northern blot analysis was performed. RESULTS: TLR-9 is expressed in 16HBE14o- cells. CpG synergistically increased IL-1β-induced IL-8 protein abundance, however treatment with CpG alone had no effect. CpC (a control ODN) had no effect on IL-1β-induced IL-8 levels. In addition, CpG synergistically upregulated TNFα-induced IL-8 expression. Silencing TLR9 using siRNA or pretreatment of cells with chloroquine had little effect on IL-1β-induced IL-8 levels, but abolished CpG-induced synergy. CpG ODN had no effect on NF-κB translocation or DNA binding in 16HBE14o- cells. Treatment with CpG increased phosphorylation of p38 and pretreatment with the p38 inhibitor SB202190 attenuated the synergistic increase in IL-8 protein levels. Analysis of the half-life of IL-8 mRNA revealed that IL-8 mRNA had a longer half-life following the co-treatment of CpG and IL-1β compared to treatment with IL-1β alone. CONCLUSION: Together, these data demonstrate that CpG modulates IL-8 synthesis in the presence of a pro-inflammatory mediator utilizing TLR9 and post-transcriptional mechanisms involving the activation of p38 and stabilization of IL-8 mRNA

    Expression of eicosanoid receptors subtypes and eosinophilic inflammation: implication on chronic rhinosinusitis

    Get PDF
    BACKGROUND: Eicosanoid receptors are G-protein-coupled receptors playing an important immunomodulatory role in airway diseases. However, there is little information on the expression of these receptors and their link with eosinophilic inflammation in paranasal sinus diseases. We aimed with this study to investigate the tissue expression of leukotrienes and prostaglandin E2 receptors in chronic rhinosinusitis patients and the link of this regulation with eosinophilic inflammation. METHODS: Samples were prepared from nasal tissue of patients with chronic rhinosinusitis without nasal polyps (CRS, n = 11), with nasal polyps (CRS-NP, n = 13) and healthy subjects (Controls, n = 6). mRNA expression of CysLT(1), CysLT(2), BLT(1), BLT(2), E-prostanoid receptors (EP(1), EP(2), EP(3), EP(4)) and sol-IL-5Rα was determined by real-time PCR. Concentrations of PGE2, LTC4/D4/E4, LTB4 and sol-IL-5Rα were determined by ELISA and of ECP by ImmunoCap. Protein expression and tissue localization of eicosanoid receptors and activated eosinophils were evaluated by immunohistochemistry. RESULTS: CysLT(1 )mRNA expression was significantly increased in CRS-NP compared to CRS and controls, and CRS compared to controls, whereas CysLT(2 )mRNA was enhanced in both CRS groups without differences between them. Levels of both receptors correlated to the number of activated eosinophils, sol-IL-5Rα, ECP and LTC(4)/D(4)/E(4 )concentrations in the disease groups. PGE(2 )protein concentrations and prostanoid receptors EP(1 )and EP(3 )were down-regulated in the CRS-NP tissue vs. CRS and controls, whereas EP(2 )and EP(4 )expression was enhanced in CRS and CRS-NP patients vs. controls. No differences in BLT receptors were observed between patients and controls. CONCLUSION: CyLTs receptors are up-regulated in nasal polyp tissue and their expression correlate with eosinophilic inflammation supporting previous results. Eicosanoid receptors mRNA pattern observed suggests that down-regulation of EP(1 )and EP(3 )in CRS-NP and up-regulation EP(2 )and EP(4 )in CRS and CRS-NP groups may have some role in the development of the diseases and their regulation may not be directly linked to eosinophil activation but involve post-transcriptional events mainly related to other inflammatory cell sources

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.
    corecore