135 research outputs found

    Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males.

    Get PDF
    BACKGROUND: In obesity, improved muscle insulin sensitivity following exercise training has been linked to the lowering of diacylglycerol (DAG) and ceramide concentrations. Little is known, however, about how improved insulin action with exercise training in obese individuals relates to lipid droplet (LD) adaptations in skeletal muscle. In this study we investigated the hypothesis that short-term sprint interval training (SIT) and moderate intensity continuous training (MICT) in obese individuals would increase perilipin (PLIN) expression, increase the proportion of LDs in contact with mitochondria and reduce muscle concentrations of DAGs and ceramides. METHODS: Sixteen sedentary obese males performed 4 weeks of either SIT (4-7 × 30 s sprints at 200% Wmax, 3 days.week(-1)) or MICT (40-60 min cycling at ~65% VO2peak, 5 days.week(-1)), and muscle biopsies were obtained pre- and post-training. RESULTS: Training increased PLIN2 (SIT 90%, MICT 68%) and PLIN5 (SIT 47%, MICT 34%) expression in type I fibres only, and increased PLIN3 expression in both type I (SIT 63%, MICT 67%) and type II fibres (SIT 70%, MICT 160%) (all P<0.05). Training did not change LD content but increased the proportion of LD in contact with mitochondria (SIT 12%, MICT 21%, P<0.01). Ceramides were reduced following training (SIT -10%, MICT -7%, P<0.05), but DAG was unchanged. No training × group interactions were observed for any variables. CONCLUSIONS: These results confirm the hypothesis that SIT and MICT results in remodelling of LDs and lowers ceramide concentrations in skeletal muscle of sedentary obese males.International Journal of Obesity accepted article preview online, 24 July 2017. doi:10.1038/ijo.2017.170

    The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-thyroidal illness syndrome (NTIS) is a characteristic functional constellation of thyrotropic feedback control that frequently occurs in critically ill patients. Although this condition is associated with significantly increased morbidity and mortality, there is still controversy on whether NTIS is caused by artefacts, is a form of beneficial adaptation, or is a disorder requiring treatment. Trials investigating substitution therapy of NTIS revealed contradictory results. The comparison of heterogeneous patient cohorts may be the cause for those inconsistencies.</p> <p>Objectives</p> <p>Primary objective of this study is the identification and differentiation of different functional states of thyrotropic feedback control in order to define relevant evaluation criteria for the prognosis of affected patients. Furthermore, we intend to assess the significance of an innovative physiological index approach (SPINA) in differential diagnosis between NTIS and latent (so-called "sub-clinical") thyrotoxicosis.</p> <p>Secondary objective is observation of variables that quantify distinct components of NTIS in the context of independent predictors of evolution, survival or pathophysiological condition and influencing or disturbing factors like medication.</p> <p>Design</p> <p>The <b>a</b>pproach to a <b>qua</b>ntitative <b>f</b>ollow-up <b>o</b>f <b>n</b>on-<b>t</b>hyroidal <b>i</b>llness <b>s</b>yndrome (AQUA FONTIS study) is designed as both a cross-sectional and prospective longitudinal observation trial in critically ill patients. Patients are observed in at least two evaluation points with consecutive assessments of thyroid status, physiological and clinical data in additional weekly observations up to discharge. A second part of the study investigates the neuropsychological impact of NTIS and medium-term outcomes.</p> <p>The study design incorporates a two-module structure that covers a reduced protocol in form of an observation trial before patients give informed consent. Additional investigations are performed if and after patients agree in participation.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00591032</p

    IL-12 and GM-CSF in DNA/MVA Immunizations against HIV-1 CRF12_BF Nef Induced T-Cell Responses With an Enhanced Magnitude, Breadth and Quality

    Get PDF
    In Argentina, the HIV epidemic is characterized by the co-circulation of subtype B and BF recombinant viral variants. Nef is an HIV protein highly variable among subtypes, making it a good tool to study the impact of HIV variability in the vaccine design setting. We have previously reported a specific cellular response against NefBF with low cross-reactivity to NefB in mice. The aim of this work was to analyze whether the co-administration of IL-12 and GM-CSF, using DNA and MVA vaccine vectors, could improve the final cellular response induced. Mice received three DNA priming doses of a plasmid that express NefBF plus DNAs expressing IL-12 and/or GM-CSF. Afterwards, all the groups were boosted with a MVAnefBF dose. The highest increase in the magnitude of the NefBF response, compared to that induced in the control was found in the IL-12 group. Importantly, a response with higher breadth was detected in groups which received IL-12 or GM-CSF, evidenced as an increased frequency of recognition of homologous (BF) and heterologous (B) Nef peptides, as well as a higher number of other Nef peptide pools representing different viral subtypes. However, these improvements were lost when both DNA cytokines were simultaneously administered, as the response was focused against the immunodominant peptide with a detrimental response towards subdominant epitopes. The pattern of cytokines secreted and the specific-T-cell proliferative capacity were improved in IL-12 and IL-12+GM-CSF groups. Importantly IL-12 generated a significant higher T-cell avidity against a B heterologous peptide

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome

    The effectiveness of e-&amp; mHealth interventions to promote physical activity and healthy diets in developing countries: a systematic review

    Get PDF
    Background: Promoting physical activity and healthy eating is important to combat the unprecedented rise in NCDs in many developing countries. Using modern information-and communication technologies to deliver physical activity and diet interventions is particularly promising considering the increased proliferation of such technologies in many developing countries. The objective of this systematic review is to investigate the effectiveness of e-&amp; mHealth interventions to promote physical activity and healthy diets in developing countries.Methods: Major databases and grey literature sources were searched to retrieve studies that quantitatively examined the effectiveness of e-&amp; mHealth interventions on physical activity and diet outcomes in developing countries. Additional studies were retrieved through citation alerts and scientific social media allowing study inclusion until August 2016. The CONSORT checklist was used to assess the risk of bias of the included studies.Results: A total of 15 studies conducted in 13 developing countries in Europe, Africa, Latin-and South America and Asia were included in the review. The majority of studies enrolled adults who were healthy or at risk of diabetes or hypertension. The average intervention length was 6.4 months, and text messages and the Internet were the most frequently used intervention delivery channels. Risk of bias across the studies was moderate (55.7 % of the criteria fulfilled). Eleven studies reported significant positive effects of an e-&amp; mHealth intervention on physical activity and/or diet behaviour. Respectively, 50 % and 70 % of the interventions were effective in promoting physical activity and healthy diets.Conclusions: The majority of studies demonstrated that e-&amp; mHealth interventions were effective in promoting physical activity and healthy diets in developing countries. Future interventions should use more rigorous study designs, investigate the cost-effectiveness and reach of interventions, and focus on emerging technologies, such as smart phone apps and wearable activity trackers.Trial registration: The review protocol can be retrieved from the PROSPERO database (Registration ID: CRD42015029240)

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background: Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. // Methods: For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dose-specific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in country-reported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. // Findings: By 2019, global coverage of third-dose DTP (DTP3; 81·6% [95% uncertainty interval 80·4–82·7]) more than doubled from levels estimated in 1980 (39·9% [37·5–42·1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38·5% [35·4–41·3] in 1980 to 83·6% [82·3–84·8] in 2019). Third-dose polio vaccine (Pol3) coverage also increased, from 42·6% (41·4–44·1) in 1980 to 79·8% (78·4–81·1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56·8 million (52·6–60·9) to 14·5 million (13·4–15·9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. // Interpretation: After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines

    Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods: We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings: In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation: The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries. Funding: Bill & Melinda Gates Foundation

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore