798 research outputs found

    A comparison of ground-based methods for estimating canopy closure for use in phenology research

    Get PDF
    Abstract Climate change is influencing tree phenology, causing earlier and more prolonged canopy closure in temperate forests. Canopy closure is closely associated with understorey light, so shifts in its timing have wide-reaching consequences for ecological processes in the understorey. Widespread monitoring of forest canopies through time is needed to understand changes in light availability during spring in particular. Canopy openness, derived from hemispherical photography, has frequently been used as a proxy for understorey light. However, hemispherical photography is relatively resource intensive, so we tested a range of inexpensive alternatives for monitoring variability in canopy closure (visual estimation, canopy scope, smartphone photography, smartphone photography with fisheye attachment; and image analysis with specialist hemispherical photography software or with simpler, open access image analysis software). Smartphone photography with an inexpensive fisheye lens attachment proved the most reliable estimator of canopy closure. We found no significant difference in canopy estimations from three widely-owned smartphone models with differing resolutions and fields of view, and no significant effect of camera operator on the results. ImageJ, a free image analysis software, detected canopy variability in a similar way to HemiView specialist hemispherical photography software. We recommend a combination of smartphone photography with fisheye attachment and analysis with ImageJ for identifying changes in the timing of canopy closure (but not for estimating absolute canopy closure). We discuss how large-scale citizen science using this approach could generate meaningful and comparative data on the timings of canopy closure in different forests, year-to-year.Abstract Climate change is influencing tree phenology, causing earlier and more prolonged canopy closure in temperate forests. Canopy closure is closely associated with understorey light, so shifts in its timing have wide-reaching consequences for ecological processes in the understorey. Widespread monitoring of forest canopies through time is needed to understand changes in light availability during spring in particular. Canopy openness, derived from hemispherical photography, has frequently been used as a proxy for understorey light. However, hemispherical photography is relatively resource intensive, so we tested a range of inexpensive alternatives for monitoring variability in canopy closure (visual estimation, canopy scope, smartphone photography, smartphone photography with fisheye attachment; and image analysis with specialist hemispherical photography software or with simpler, open access image analysis software). Smartphone photography with an inexpensive fisheye lens attachment proved the most reliable estimator of canopy closure. We found no significant difference in canopy estimations from three widely-owned smartphone models with differing resolutions and fields of view, and no significant effect of camera operator on the results. ImageJ, a free image analysis software, detected canopy variability in a similar way to HemiView specialist hemispherical photography software. We recommend a combination of smartphone photography with fisheye attachment and analysis with ImageJ for identifying changes in the timing of canopy closure (but not for estimating absolute canopy closure). We discuss how large-scale citizen science using this approach could generate meaningful and comparative data on the timings of canopy closure in different forests, year-to-year

    Performance of LED-Based Fluorescence Microscopy to Diagnose Tuberculosis in a Peripheral Health Centre in Nairobi.

    Get PDF
    Sputum microscopy is the only tuberculosis (TB) diagnostic available at peripheral levels of care in resource limited countries. Its sensitivity is low, particularly in high HIV prevalence settings. Fluorescence microscopy (FM) can improve performance of microscopy and with the new light emitting diode (LED) technologies could be appropriate for peripheral settings. The study aimed to compare the performance of LED-FM versus Ziehl-Neelsen (ZN) microscopy and to assess feasibility of LED-FM at a low level of care in a high HIV prevalence country

    Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation.

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Nitrate derived from vegetables is consumed as part of a normal diet and is reduced endogenously via nitrite to nitric oxide. It has been shown to improve endothelial function, reduce blood pressure and the oxygen cost of sub-maximal exercise, and increase regional perfusion in the brain. The current study assessed the effects of dietary nitrate on cognitive performance and prefrontal cortex cerebral blood-flow (CBF) parameters in healthy adults. In this randomised, double-blind, placebo-controlled, parallel-groups study, 40 healthy adults received either placebo or 450 ml beetroot juice (~5.5 mmol nitrate). Following a 90 minute drink/absorption period, participants performed a selection of cognitive tasks that activate the frontal cortex for 54 min. Near-Infrared Spectroscopy (NIRS) was used to monitor CBF and hemodynamics, as indexed by concentration changes in oxygenated and deoxygenated-haemoglobin, in the frontal cortex throughout. The bioconversion of nitrate to nitrite was confirmed in plasma by ozone-based chemi-luminescence. Dietary nitrate modulated the hemodynamic response to task performance, with an initial increase in CBF at the start of the task period, followed by consistent reductions during the least demanding of the three tasks utilised. Cognitive performance was improved on the serial 3s subtraction task. These results show that single doses of dietary nitrate can modulate the CBF response to task performance and potentially improve cognitive performance, and suggest one possible mechanism by which vegetable consumption may have beneficial effects on brain function

    Coral Reef Exposure to Damaging Tropical Cyclone Waves in a Warming Climate

    Get PDF
    Tropical cyclones generate large waves that physically damage coral communities and are commonly cited as a worsening threat to coral reefs under climate change. However, beyond projections of ocean basin-scale changes in cyclone intensity, the other determinants of future coral reef damage such as cyclone size and duration remain uncertain. Here, we determine the extent to which downscaled cyclones represent observed cyclone characteristics that influence wave damage to Australian coral reef regions. We then investigate mid-century (2040–2060) and end of century (2080–2100) downscaled tracks to assess whether cyclone characteristics will change with future warming under a high-emissions scenario. We find that spatial uncertainties in downscaled cyclogenesis and track positions limit estimates of reef damage for individual coral reefs and regions. Further, the models are unable to reproduce the most reef damaging cyclones for any of the regions. The downscaled tracks capture observed cyclone characteristics, such as size, impacting the Great Barrier Reef well, but perform poorly for the Northern Territory, with mixed performance for the Coral Sea and Western Australia. We find no clear evidence that cyclones will cause more damage to Australian coral reef regions in the future, at least based on the climate models and downscaling approach examined here. There is increasing interest in using tropical cyclone projections to assess future coral reef exposure to damaging waves. We recommend caution when interpreting such projections due to large uncertainty in the mechanisms that influence reef damaging tropical cyclone characteristics and how these will change with future warming

    Participatory Action Research on School Culture and Student Mental Health: A Study Protocol

    Get PDF
    Background: Young people spend a large proportion of their time in school, which presents both risk and protective factors for their mental health. A supportive school culture can promote and protect good mental health by creating experiences of safety and belonging amongst staff and students. In this qualitative study, we seek to explore whether a participatory action research (PAR) approach is an effective way to promote and improve student mental health. Methods: Participatory action research is an approach in which people collaboratively research their own experience: the researched communities become co-researchers of their own experiences in a specific context. We will work with four secondary schools in the UK to develop PAR projects. In each school, a group of 2–4 staff and 6–8 students will work together to develop a shared understanding of their school culture and to introduce activities or changes to make the culture more supportive of student mental health. We will evaluate the effectiveness of the PAR approach through i) a review of school documents pertaining to mental health (e.g., policies and Ofsted reports), ii) interviews with staff members ( n = 40), parents ( n = 8) and students ( n = 24–40) before and after the PAR intervention, iii) observations and reports of the PAR group meetings and iv) interviews with members of the PAR groups after the PAR intervention. Discussion: We anticipate that our research findings will advance knowledge on effective methods to develop a positive school culture that will contribute to the improvement of young people’s mental health and well-being. We will seek to identify the mechanisms through which school culture can have a positive impact on mental health and develop a logic model and a school culture toolkit that can be utilised as a resource to inform public health interventions to promote mental health in a range of educational settings.National Institute for Health Research (NIHR) School for Public Health Research (Grant Reference Number PD–SPH–2015)

    A Learning Management System-Based Early Warning System for Academic Advising in Undergraduate Engineering

    Full text link
    This chapter describes a design-based research project that developed an early warning system for an undergraduate engineering mentoring program. Using near real-time data from a university’s learning management system, we provided academic advisors with timely and targeted data on students’ academic progress. We discuss the development of the early warning system and detail how academic advisors used it. Our findings point to the value of providing academic advisors with performance data that can be used to direct students to appropriate sources of support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107974/1/Krumm_etal_2014_LA.pd

    Direct microscopy versus sputum cytology analysis and bleach sedimentation for diagnosis of tuberculosis: a prospective diagnostic study.

    Get PDF
    ABSTRACT: BACKGROUND: Diagnostic options for pulmonary tuberculosis in resource-poor settings are commonly limited to smear microscopy. We investigated whether bleach concentration by sedimentation and sputum cytology analysis (SCA) increased the positivity rate of smear microscopy for smear-positive tuberculosis. METHODS: We did a prospective diagnostic study in a Medecins Sans Frontieres-supported hospital in Mindouli, Republic of Congo. Three sputum samples were obtained from 280 consecutive pulmonary tuberculosis suspects, and were processed according to WHO guidelines for direct smear microscopy. The remainder of each sputum sample was homogenised with 2.6% bleach, sedimented overnight, smeared, and examined blinded to the direct smear result for acid-fast bacilli (AFB). All direct smears were assessed for quality by SCA. If a patient produced fewer than three good-quality sputum samples, further samples were requested. Sediment smear examination was performed independently of SCA result on the corresponding direct smear. Positivity rates were compared using McNemar's test. RESULTS: Excluding SCA, 43.2% of all patients were diagnosed as positive on direct microscopy of up to three samples. 47.9% were diagnosed on sediment microscopy, with 48.2% being diagnosed on direct microscopy, sediment microscopy, or both. The positivity rate increased from 43.2% to 47.9% with a case definition of one positive smear ([greater than or equal to]1 AFB/100 high power fields) of three, and from 42.1% to 43.9% with two positive smears. SCA resulted in 87.9% of patients producing at least two good-quality sputum samples, with 75.7% producing three or more. Using a case definition of one positive smear, the incremental yield of bleach sedimentation was 14/121, or 11.6% (95% CI 6.5-18.6, p=0.001) and in combination with SCA was 15/121, or 12.4% (95% CI 7.1-19.6, p=0.002). Incremental yields with two positive smears were 5/118, or 4.2% (95% CI 1.4-9.6, p=0.062) and 7/118, or 5.9% (95% CI 2.4-11.8, p=0.016), respectively. CONCLUSIONS: The combination of bleach sedimentation and SCA resulted in significantly increased microscopy positivity rates with a case definition of either one or two positive smears. Implementation of bleach sedimentation led to a significant increase in the diagnosis of smear-positive patients. Implementation of SCA did not result in significantly increased diagnosis of tuberculosis, but did result in improved sample quality. Requesting extra sputum samples based on SCA results, combined with bleach sedimentation, could significantly increase the detection of smear-positive patients if routinely implemented in resource-limited settings where gold standard techniques are not available. We recommend that a pilot phase is undertaken before routine implementation to determine the impact in a particular context

    A systematic review of the use of an expertise-based randomised controlled trial design

    Get PDF
    Acknowledgements JAC held a Medical Research Council UK methodology (G1002292) fellowship, which supported this research. The Health Services Research Unit, Institute of Applied Health Sciences (University of Aberdeen), is core-funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. Views express are those of the authors and do not necessarily reflect the views of the funders.Peer reviewedPublisher PD
    corecore