19 research outputs found

    DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird

    Get PDF
    © 2017 De Paoli-Iseppi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Most seabirds do not have any outward identifiers of their chronological age, so estimation of seabird population age structure generally requires expensive, long-term banding studies. We investigated the potential to use a molecular age biomarker to estimate age in short-tailed shearwaters (Ardenna tenuirostris). We quantified DNA methylation in several A. tenuirostris genes that have shown age-related methylation changes in mammals. In birds ranging from chicks to 21 years of age, bisulphite treated blood and feather DNA was sequenced and methylation levels analysed in 67 CpG sites in 13 target gene regions. From blood samples, five of the top relationships with age were identified in KCNC3 loci (CpG66: R2 = 0.325, p = 0.019). In feather samples ELOVL2 (CpG42: R2 = 0.285, p = 0.00048) and EDARADD (CpG46: R2 = 0.168, p = 0.0067) were also weakly correlated with age. However, the majority of markers had no clear association with age (of 131 comparisons only 12 had a p-value < 0.05) and statistical analysis using a penalised lasso approach did not produce an accurate ageing model. Our data indicate that some age-related signatures identified in orthologous mammalian genes are not conserved in the long-lived short tailed shearwater. Alternative molecular approaches will be required to identify a reliable biomarker of chronological age in these seabirds

    Genetic monitoring of open ocean biodiversity: an evaluation of DNA metabarcoding for processing continuous plankton recorder samples

    No full text
    DNA metabarcoding is an efficient method for measuring biodiversity, but the process of initiating long-term DNA-based monitoring programmes, or integrating with conventional programs, is only starting. In marine ecosystems, plankton surveys using the continuous plankton recorder (CPR) have characterized biodiversity along transects covering millions of kilometres with time-series spanning decades. We investigated the potential for use of metabarcoding in CPR surveys. Samples (n = 53) were collected in two Southern Ocean transects and metazoans identified using standard microscopic methods and by high-throughput sequencing of a cytochrome c oxidase subunit I marker. DNA increased the number of metazoan species identified and provided high-resolution taxonomy of groups problematic in conventional surveys (e.g., larval echinoderms and hydrozoans). Metabarcoding also generally produced more detections than microscopy, but this sensitivity may make cross-contamination during sampling a problem. In some samples, the prevalence of DNA from large plankton such as krill masked the presence of smaller species. We investigated adding a fixed amount of exogenous DNA to samples as an internal control to allow determination of relative plankton biomass. Overall, the metabarcoding data represent a substantial shift in perspective, making direct integration into current long-term time-series challenging. We discuss a number of hurdles that exist for progressing DNA metabarcoding from the current snapshot studies to the requirements of a long-term monitoring programme. Given the power and continually increasing efficiency of metabarcoding, it is almost certain this approach will play an important role in future plankton monitoring
    corecore