4,635 research outputs found
Diverse Functions of Retinoic Acid in Brain Vascular Development
As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood–brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus
Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in Blastocystis: The Emerging Role of Gatekeeper Residues.
PublishedJournal ArticleThis is the final version of the article. Available from American Chemical Society via the DOI in this record.Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.Work is supported by the National Institute of Malaria Research, Indian Council of Medical Research, New Delhi and Dept. of Biotechnology, New Delhi. K.C.P. is a recipient of the Prof. Ramalingaswami Fellowship (Department of Biotechnology, Government of India (BT/HRD/35/02/2006), K.V. is a recipient of UGC Senior Research Fellowship, M.v.d.G. is grateful for support from the University of Exeter and the Wellcome Trust (078566/A/05/Z)
Practical computational toolkits for dendrimers and dendrons structure design
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe
Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09
which was part of Working Group-4. Discussion and work on some aspects of
Quark-Gluon Plasma believed to have created in heavy-ion collisions and in
early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in
"IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in
Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be
published in PRAMANA - Journal of Physics (Indian Academy of Science
Bench-to-bedside review : targeting antioxidants to mitochondria in sepsis
Peer reviewedPublisher PD
Circuit dissection of the role of somatostatin in itch and pain
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide
Social factors and obesity: an investigation of the role of health behaviours
OBJECTIVES: This study evaluated a behavioural model of the relation between social factors and obesity, in which differences in body mass index (BMI) across sociodemographic groups were hypothesized to be attributable to social group differences in health behaviours affecting energy expenditure (physical activity, diet and alcohol consumption and weight control). METHODS: A total of 8667 adults who participated in the 1995 Australian National Health and Nutrition Surveys provided data on a range of health factors including objectively measured height and weight, health behaviours, and social factors including family status, employment status, housing situation and migration status. RESULTS: Social factors remained significant predictors of BMI after controlling for all health behaviours. Neither social factors alone, nor health behaviours alone, adequately explained the variance in BMI. Gender-specific interactions were found between social factors and individual health behaviours. CONCLUSIONS: These results suggest that social factors moderate the relation between BMI and weight-related behaviours, and that the mechanisms underlying sociodemographic group differences in obesity may vary among men and women. Additional factors are likely to act in conjunction with current health behaviours to explain variation in obesity prevalence across sociodemographic groups.<br /
Facile, productive, and cost-effective synthesis of a novel tetrazine-based iron oxide nanoparticle for targeted image contrast agents and nanomedicines
We have developed an operationally simple, time, and cost-effective protocol to produce a novel tetrazine-based iron oxide nanoparticle using commercially available and inexpensive materials. Our protocol proceeds at room temperature and uses hexafluorophosphate azabenzotriazole tetramethyl uronium, a well-known, widely used reagent for the large-scale industrial production of important pharmaceuticals. The nanoparticles obtained have a diameter range between 16 and 21 nm and showed no toxicity against endothelial cell lines. The tetrazine moiety on the nanoparticle surface could potentially allow further attachment of specific targeting vectors by using so-called copper-free click chemistry. We therefore anticipate that our protocol can represent a significant breakthrough in the future development and commercialization of improved, tissue-specific contrast agents and drug delivery for clinical diagnosis, monitoring and therapy of diseases at an asymptomatic stage
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
- …
