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Abstract (239 words) 34 

As neural structures grow in size and increase metabolic demand, the central nervous system 35 

(CNS) vasculature undergoes extensive growth, remodeling, and maturation.  Signals from neural tissue 36 

act on endothelial cells to stimulate blood vessel ingression, vessel patterning and acquisition of mature 37 

brain vascular traits, most notably the blood brain barrier (BBB). Using mouse genetic and in vitro 38 

approaches, we identified retinoic acid (RA) as an important regulator of brain vascular 39 

development via non-cell and cell autonomous regulation of endothelial WNT signaling. Our 40 

analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell 41 

autonomous function for RA in development of the vasculature in the neocortex. We demonstrate 42 

Rdh10 mutants have severe defects in cerebrovascular development and this phenotype correlates with 43 

near absence of endothelial WNT signaling specifically in the cerebrovasculature and substantially 44 

elevated expression of WNT inhibitors in the neocortex. We show RA can suppress expression of WNT 45 

inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions 46 

suggested RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit 47 

WNT signaling. Using both gain and loss of RA signaling approaches, we show RA signaling in brain 48 

endothelial cells can inhibit WNT-β-catenin transcriptional activity and this is required to moderate 49 

expression of WNT target Sox17. From this, a model emerges where RA acts upstream of the WNT 50 

pathway via non-cell and cell autonomous mechanisms to ensure formation of an adequate and 51 

stable brain vascular plexus.   52 

53 
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Significance (114 words) 54 

 Work presented here provides novel insight into important yet little understood aspects of brain 55 

vascular development and our experiments place, for the first time, a factor upstream of endothelial 56 

WNT signaling. We show RA is permissive for cerebrovascular growth via suppression of WNT 57 

inhibitor expression in the neocortex. RA also functions cell-autonomously in brain endothelial cells to 58 

modulate WNT signaling and its downstream target Sox17. The significance of this is that though 59 

endothelial WNT signaling is required for neurovascular development, too much endothelial WNT 60 

signaling, as well as over-expression of its target Sox17, are detrimental. Thus RA may act as a ‘brake’ 61 

on endothelial WNT signaling and Sox17 to ensure normal brain vascular development.    62 
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Introduction (647 words)  63 

Expansion and maturation of the vasculature is essential to support brain growth and establish a 64 

vascular plexus that can sustain brain function. Mouse CNS vascular development begins at ~embryonic 65 

day 9 (E9) when vessels from the perineural vascular plexus (PNVP) that surround the CNS ingress 66 

starting at the spinal cord and soon after in more rostral brain structures (Nakao et al., 1988). Angiogenic 67 

growth occurs in response to vascular endothelial growth factor-A (VEGFA) (Breier et al., 1992; Haigh 68 

et al., 2003; Raab et al., 2004; James et al., 2009) and WNT ligands (Stenman et al., 2008; Daneman et 69 

al., 2009) secreted by neural progenitors in the ventricular zone (VZ) and, later, WNT ligands from post-70 

mitotic neurons. Parallel with vascular growth, CNS endothelial cells (ECs) acquire blood brain barrier 71 

(BBB) properties including expression of tight junctional proteins and transporters like glucose 72 

transporter-1 (GLUT-1) that ensure influx and efflux of substances across the BBB (Bauer et al., 1993; 73 

Daneman et al., 2010). CNS vascular development is complex, in part because vascular growth and 74 

maturation occur against the backdrop of a rapidly changing neural environment that produces most 75 

neuro-angiogenic ligands. How CNS ECs successfully integrate diverse angiogenic and maturation cues 76 

from the neural environment to create a stable vasculature is not well understood. 77 

Retinoic acid (RA) is a lipid soluble hormone produced by cell types within and around the CNS 78 

and it has diverse developmental roles (Napoli, 1999; Toresson et al., 1999; Li et al., 2000; Maden, 79 

2001; Schneider et al., 2001; Smith et al., 2001; Zhang et al., 2003; Siegenthaler et al., 2009). RA 80 

signaling is mediated by Retinoic acid receptors (RARs) that act as receptors and transcription factors to 81 

control gene transcription (Al Tanoury et al., 2013). RA is required for vasculogenesis in the early 82 

embryo (Lai et al., 2003; Bohnsack et al., 2004) and there is some evidence that RA may have a role in 83 

angiogenesis and vessel maturation in the CNS. RA is implicated in BBB development through 84 

regulation of BBB protein expression, specifically VE-Cadherin (Mizee et al., 2013; Lippmann et al., 85 

2014). Mice that lack both retinoid receptors RARα and RARγ have significant defects in CNS 86 
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development and visible brain hemorrhaging, notably in the cerebral hemispheres (Lohnes et al., 1994). 87 

RAR receptors are expressed in fetal human and mouse brain ECs (Mizee et al., 2013), suggesting that 88 

ECs in the developing CNS are RA-responsive. Collectively these data indicate RA may have a 89 

significant role in controlling brain vascular development.   90 

Using global RA-deficient mouse mutants (Rdh10 mutants) and EC-specific disruption of RA 91 

signaling (PdgfbiCre; dnRAR403-flox), we show RA has separate, non-cell and cell-autonomous 92 

roles with regard to endothelial WNT signaling. Rdh10 mutant embryos have impaired neocortical 93 

development (Siegenthaler et al. 2009) and here we describe vascular growth defects specific to the 94 

neocortex. Reduced cerebrovascular growth in Rdh10 mutants is accompanied by disruption in VEGF-A 95 

and WNT. However, elevated Vegfa expression is not limited to the neocortex and may reflect 96 

widespread brain hypoxia. In contrast, endothelial WNT signaling is specifically diminished in the 97 

Rdh10 mutant cerebrovasculature. This is accompanied by significantly elevated levels of WNT 98 

inhibitors in the Rdh10 mutant neocortex but no other brain regions. Combined with our data showing 99 

RA suppresses gene expression of WNT inhibitors in cultured neocortical progenitors, our 100 

analysis of cerebrovascular defects in Rdh10 mutants point to RA functioning non-cell 101 

autonomously in the neocortex to create a permissive environment for endothelial WNT signaling. 102 

Vascular development is relatively normal in other regions of Rdh10 mutant brains and, strikingly, 103 

endothelial WNT signaling is increased. This finding suggested RA may act cell-autonomously in 104 

brain ECs to inhibit WNT signaling. In support of this, we find PdgfbiCre; dnRAR403-flox 105 

mutants have increased endothelial WNT signaling and expression of WNT transcriptional targets 106 

LEF-1 and Sox17. Collectively, this work shows that RA regulates brain vascular development by 107 

acting upstream of WNT signaling through different, non-cell and cell autonomous mechanisms.  108 

 109 
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Materials and Methods 110 
 111 
Animals. Mice used for experiments here were housed in specific-pathogen-free facilities approved by 112 

AALAC and were handled in accordance with protocols approved by the UCSF Committee on Animal 113 

Research and the UC Anschutz Medical Campus IACUC committee. The following mouse lines were 114 

used in this study:  PdgfbiCre (Claxton et al., 2008), Ctnnb1-flox (Brault et al., 2001), Bat-gal-lacZ 115 

(Maretto et al., 2003), Ephrin-B2-H2B-GFP (Davy et al., 2006), and dnRAR403-flox (Rosselot et al., 116 

2010). The Rdh10 ENU point mutation mutant allele has been described previously (Ashique et al., 117 

2012) and were obtained from Andy Peterson at Genentech.  Tamoxifen (Sigma) was dissolved in corn 118 

oil (Sigma; 20 mg/ml) and 100 ul was injected intra-peritoneal into pregnant females at E9 and E10 to 119 

generate PdgfbiCre; dnRAR403-flox mutant animals. For generation of PdgfbiCre; Ctnnb1-fl/fl mutants, 120 

tamoxifen was administered to pregnant females on E11 and E12. RA-enriched diet (final concentration 121 

0.175 mg/g food) consisted of all-trans-RA (atRA; Sigma-Aldrich) dissolved in corn oil and mixed with 122 

Bioserv Nutra-Gel Diet™, Grain-Based Formula, Cherry Flavor. atRA diet was prepared fresh daily and 123 

provided ad libitum from the afternoon of E10 through the day of collection (E14.5 or E16.5).   124 

Immunohistochemistry. Fetuses (E12.5-E18.5) were collected and whole heads or brains were fixed 125 

overnight in 4% paraformaldehyde. All tissues were cryoprotected with 20% sucrose in PBS and 126 

subsequently frozen in OCT. Tissue was cryosectioned in 12 µm increments. Immunohistochemistry 127 

was performed on tissue sections as described previously (Zarbalis et al., 2007; Siegenthaler et al., 2009) 128 

using the following antibodies: rabbit anti-β-galactosidase 1:500 (Cappel), rabbit anti-GLUT-1 1:500 129 

(Lab Vision-Thermo Scientific), goat anti-Sox17 1:100 (R&D Systems), chicken anti-GFP 1:500 130 

(Invitrogen), mouse anti-BrdU 1:50 (BD Biosciences) mouse anti-CoupTFII 1:100 (R&D Systems), 131 

rabbit anti-Claudin-3 1:200 (Invitrogen), rabbit anti-LEF-1 1:100 (Cell Signaling Technology), rabbit 132 

anti-Pax6 1:200 (Biolegend), chicken anti-Tbr2 1:100 (Millipore) and rat anti-Ctip2 1:1000 (Abcam). 133 
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Following incubation with primary antibody(s), sections were incubated with appropriate Alexafluor-134 

conjugated secondary antibodies (Invitrogen), Alexafluor 633-conjugated isolectin-B4 (Invitrogen), and 135 

DAPI (Invitrogen). For LEF-1, immunostaining was performed using the Tyramide System 136 

Amplification (TSA) Kit (Invitrogen) per manufacturer’s instructions. Immunofluorescent (IF) images 137 

were captured using a Retiga CCD-cooled camera and associated QCapture Pro software (QImaging 138 

Surrey, BC Canada), a Nikon i80 research microscope with Cool-Snap CCD-cooled camera or Zeiss 780 139 

LSM confocal microscope. 140 

Cell proliferation and trans-well migration assay with bEnd.3 cell line. The mouse brain endothelioma 141 

cell line (bEnd.3) was from ATCC (cat# CRL-2299). All experiments were performed on cells from 142 

passages 2-4 and cells were grown in Dulbecco’s minimal essential media with 4.5g/L glucose, 1.5g/L 143 

sodium bicarbonate, 4mM L-glutamine (Invitrogen), 10% fetal bovine serum (FBS) (Invitrogen) and 144 

Penicillin (0.0637g/L)-Streptomycin (0.1g/L) (UCSF Cell Culture Facility or Invitrogen). On day 1 of 145 

the cell proliferation assays, 7x104 cells were plated in each well of an 8-well glass chambered slide 146 

(Nunc Lab-Tek) and allowed to adhere for ~5 hours after which media was changed to DMEM with 1% 147 

FBS. On day 2, atRA (50 nM; Sigma-Aldrich) and/or WNT3a (0.05, 0.1 or 0.3 µg/ml; R&D Systems) 148 

was added to the media. On day 5, 1 mM BrdU (Roche) was added to the media in each well and 2 149 

hours later, cells were fixed for 15 min with 4% paraformaldehyde.  Cells were immunostained to detect 150 

BrdU incorporation (mouse anti-BrdU 1:50; BD Bioscience) and stained with DAPI to visualize all cell 151 

nuclei. For analysis of cell proliferation, 4, 10x images were obtained for each treatment condition (2 152 

wells per treatment in each replicate) and the percentage of BrdU+ cells was determined for each image 153 

(# BrdU+ cells/# DAPI+ cells). The value for each replicate is an average from the four images. For the 154 

transwell migration assay, 8x104 cells in 100 µl of media was pipetted into the top chamber of a 155 

Millicell cell culture insert with a 8µm filter pore size (Millipore cat#: PI8P01250). The culture well 156 

immediately below the insert contained 500 µl of media with retinoic acid (50 nM) and/or WNT3a (0.1 157 
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or 0.3 µg/ml) and WNT7a (5 µg/ml).  The cells were allowed to migrate through the pores for 20 hours, 158 

cells were fixed for 15 minutes with 4% paraformaldehyde and a cotton swab was used to remove the 159 

cells still within the top chamber. The filter was cut away from the insert, stained with DAPI to visualize 160 

the cell nuclei and filters were mounted onto slides for imaging.  For analysis of cell migration, 4, 10x 161 

images were obtained for each treatment condition (2 transwell filters per treatment in each replicate) 162 

and the number of DAPI+ nuclei were assessed in a counting area within each 10x image field. For 163 

WNT7a-RA experiments, the entire 10x field was counted. For both the cell proliferation and transwell 164 

migration assays, a minimum of three independent replicates (n≥3) were performed for each treatment 165 

condition. 166 

Quantitative analysis of fetal neurovasculature. Vessel density and β-gal+ endothelial cell analysis was 167 

performed on E12.5 and E14.5 control (Rdh10+/+ or Rdh10+/-) and Rdh10-mutant animals (thalamus, 168 

midbrain and hindbrain), E14.5 and E16.5 Bat-gal-LacZ/+ animals (forebrain), and E18.5 PdgfbiCre; 169 

dnRAR403-fl control and mutant animals (forebrain) on a minimum of three separate brains per 170 

genotype/treatment/embryonic day point (n≥3). To determine mean vessel density, the sum length of 171 

IB4+ cerebral vessels was determined from a single, 20x field and divided by the area of the tissue 172 

analyzed. All density measurements were performed using ImageJ software (NIH) on a minimum of 5, 173 

20x fields per brain. For quantification of β-gal+ ECs in fetuses expressing the Bat-gal-lacZ/+ allele, the 174 

number of β-galactosidase+/IB4+ ECs was counted in a single, 20x image and divided by the sum length 175 

of IB4+ blood vessels within the image. This was performed on a minimum of 5, 20x fields per brain. 176 

To quantify cell proliferation in the Rdh10 E14.5 control and mutant PNVP and in the neocortical 177 

plexus, pregnant dams were injected with (50 mg/kg body weight, Roche) BrdU and embryos were 178 

collected 2 hours later. Following processing for GLUT-1/BrdU/Ib4/DAPI IF, the total number of 179 

BrdU+/GLUT-1+ ECs was divided by the total number of GLUT-1+ ECs in a 20x field. Analysis was 180 

performed separately for the PNVP and vessels with the neocortical plexus. All cell proliferation 181 
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analysis was performed using ImageJ software (NIH) on a minimum of 5, 20x fields per brain. Cell 182 

proliferation analysis was performed on a minimum of 3 separate brains per genotype (n≥3). 183 

Luciferase assays. HEK293 cells were grown in 1:1 DMEM:F12 supplemented with 10% FBS and  184 

penicillin:streptomycin. Twenty-four hours prior to transfection cells, were plated in antibiotic free 185 

media at a density of 4x105 per well of poly-l-lysine treated 12 well plates. Cells were transfected using 186 

Lipofectamine 2000 (Invitrogen) with 500ng of the expression plasmids: RARα.pCMV-Sport6 (Open 187 

Biosystems), RXRβ.pCMV-Sport6 (Open Biosystems) or dnRARα.pCIG (subcloned with dnRARa403 188 

(Addgene plasmid: 15153) and pCIG (Megason and McMahon, 2002)) and 100 ng of the reporter 189 

plasmids M50-TOP-Flash or M51-FOP-Flash (Addgene). pCIG was added to normalize total DNA 190 

concentration. Four hours following transfection cells were treated with recombinant mouse WNT3a 191 

(0.1 µg/ml; R&D Systems), retinoic acid (1 µM; Sigma Aldrich) or vector control. Luciferase levels 192 

were measured 18 hours post-transfection using the Dual Luciferase Assay Kit according to the 193 

manufacturer’s instructions (Promega). Luciferase assays were performed in triplicate and normalized to 194 

total protein concentration. All assays were repeated in 3 independent experiments, and the results of 195 

one such experiment are shown in Figure 5.  196 

Microvessel isolation, multi-gene transcriptional profiling.  Isolation of RNA from microvessels from 197 

E18.5 control (PdgfbiCre/+;Ctnnb1-fl/+) and mutant (PdgfbiCre/+; Ctnnb1-fl/fl) brains was performed 198 

as described previously (Siegenthaler et al., 2013).  Multigene transcriptional profiling, a form of 199 

quantitative RT-PCR, was used to determine the number of mRNA copies per cell normalized to 18S 200 

rRNA abundance (106 18S-rRNA copies/cell) (Shih and Smith, 2005).  For each sample, mRNA copy 201 

numbers for Sox17, Lef1 and Axin2 were normalized to CD144 copy number to correct for variability in 202 

microvessel isolation between brains. Analysis was performed on microvessels isolated from 3 control 203 

and 3 mutant E18.5 brains (n=3).  For RT-PCR of RA receptor gene expression, RNA was isolated from 204 
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E18.5 wildtype microvessels and postnatal day 7 meninges and cDNA was generated from 100 ng of 205 

RNA using SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen).  Primer sequences are as follows: 206 

Lef1 forward: AGGGCGACTTAGCCGACAT, Lef1 reverse: GGGCTTGTCTGACCACCTCAT; Axin2 207 

forward: GTGCCGACCTCAAGTGCAA, Axin2 reverse: GGTGGCCCGAAGAGTTTTG;  Sox17 208 

forward: GGCCGATGAACGCCTTTAT, Sox17 reverse: AGCTCTGCGTTGTGCAGATCT; Rara 209 

forward: AGCTCTGCGTTGTGCAGATCT, Rara reverse: AGAGTGTCCAAGCCCTCAGA; Rarb 210 

forward: TTCAAAGCAGGAATGCACAG, Rarb reverse: GGCAAAGGTGAACACAAGGT; Rarg 211 

forward: CACAGCCTGCCAGTCTACAA, Rarg reverse: CTGGCAGAGTGAGGGAAAAG; Rxra 212 

forward: CTGCCGCTCGACTTCTCTAC, Rxra reverse: ATATTTCCTGAGGGATGGGC; Rxrb 213 

forward: TGGGGGTGAGAAAAGAGATG, Rxrb reverse: GAGCGACACTGTGGAGTTGA; Rxrg 214 

forward: AATGCTCTTGGCTCTCCGTA, Rxrg reverse: TGAAGAAGCCTTTGCAACCT.  215 

Tissue and neocortical progenitor cell culture/isolation, qPCR. Meninges were removed from E14 wild-216 

type (n=5) and RDH10 mutant brains (n=4). RNA was isolated separately from the neocortices and the 217 

non-neocortical brain regions using the RNeasy Mini Kit (Qiagen). E14 cortical progenitor cells (R&D 218 

systems) were seeded onto 15µg/ml Poly-L-ornithine (Sigma) and 1µg/ml laminin (Sigma) coated 6 219 

well plates as a monolayer culture. Cell culture medium was composed of DMEM/F-12 with glutamax 220 

(Life Technologies), 1X N2 supplement composed of Insulin, Human Transferrin, Putrescine, Selenite 221 

and Progesterone (Life Technologies) and glucose (Sigma). Culture medium was supplemented with 222 

10ng/ml of human basic fibroblast growth factor (R&D systems) and 10ng/ml of human epidermal 223 

growth factor (R&D systems) every day until cell lysate collection to maintain cortical progenitors cells 224 

in an undifferentiated state. After 24 hours exposure to treatment conditions, total cellular RNA was 225 

isolated from vehicle treated, 1µM atRA and 1µM atRA +1µM pan-Retinoic Acid Receptor antagonist 226 

(Santa Cruz Biotechnology) treated using the RNeasy Mini Kit. Experiments using cortical progenitor 227 

cells were performed three separate times (n=3). To synthesize cDNA, specifications were followed 228 
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using the iScript cDNA Synthesis Kit with 1 µg (brain samples) or 500 ng (cultured cells) of RNA from 229 

each sample. To assess Vegfa, Ldha, Pdk, Cox4-2, Slc2a1, WNT7a, WNT7b, Sfrp1, Sfrp2, Sfrp4, Sfrp5 230 

and Dkk1 transcript levels qRT-PCR was performed according to the SYBR Green (BioRad) protocol 231 

using the BioRad CFX96 Real Time PCR Detection System. For an internal control, Actb transcript 232 

levels were also assessed. To identify differences in expression between control and mutant genotypes, 233 

delta-delta CT analysis was applied. Primer sequences are as follows: Vegfa forward: 234 

CAGGCTGCTGTAACGATGAA, Vegfa reverse: TTTGACCCTTTCCCTTTCCT; Ldha forward: 235 

AGCAGGTGGTTGAGAGTGCT, Ldha reverse: GGCCTCTTCCTCAGAAGTCA; Pdk1 forward: 236 

CCCCGATTCAGGTTCACG, Pdk1 reverse: CCCGGTCACTCATCTTCACA; Cox4-2 forward: 237 

GGTTGTCACCCTGACGGAAG, Cox4-2 reverse: GAGGGGAGGGGATGATTGTC ; Slc2a1 forward: 238 

TCAGGCGGAAGCTAGGAAC, Slc2a1 reverse: GGAGGGAAACATGCAGTCATC; WNT7a 239 

forward: GCAATAAGACAGCCCCTCAG, WNT7a reverse: ATCCTGCCTGTGATCTGACC; WNT7b 240 

forward: CAGCCAATCTTCCATTCCAT, WNT7b reverse: CCTGACCTCTCCTGAACCTG; Sfrp1 241 

forward: GAGTTTTGTTGCGGACCTGT, Sfrp1 reverse: GCCAGGGACAAAGCTAATGA; Sfrp2 242 

forward: GCTTGTGGGTCCCAGACTTA, Sfrp2 reverse: GCATCATGCAATGAGGAATG; Sfrp4 243 

forward: GACCCTGGCAACATACCTGA, Sfrp4 reverse: CATCTTGATGGGGCAGGATA; Sfrp5 244 

forward:  TGGAGCCCAGAAGAAGAAGA, Sfrp5 reverse: TTCTTGTCCCAGCGGTAGAC; Dkk1 245 

forward: GCCTCCGATCATCAGACTGT, Dkk1 reverse: GCTGGCTTGATGGTGATCTT; Actb 246 

forward: CTAGGCACCAGGGTGTGAT, Actb reverse: TGCCAGATCTTCTCCATGTC.  247 

Immunoblots. Cortices (E18.5) from PdgfbiCre; dnRAR403-fl from four separate animals per genotype 248 

(n=4) were collected, lysed in RIPA buffer (Sigma) containing a protease inhibitor cocktail tablet 249 

(Roche). Protein concentration was determined using a BCA kit (Pierce). Lysates were combined with 250 

4X sample buffer (300 mM Tris, 5% SDS, 50% glycerol, 0.025% bromophenol blue, 250 mM β-251 

mercaptoethanol) and 70 ug (E18.5) or 15 ug (E16.5) of protein per sample was run on Protean Tris-HCI 252 
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4-20% gradient gel (Bio-Rad) then transferred onto PVDF membranes (Bio-Rad) or nitrocellulose 253 

membranes (Bio-Rad) using the Trans-Blot Turbo System (Bio-Rad). Immunoblots were blocked with 254 

5% non-fat dehydrated milk (NFDM) in Tris buffered saline (TBS) with 0.1% Tween (TBS-T) for 1.5 255 

hour then incubated overnight at 4ºC in 2.5% NFDM in TBS-T containing primary antibodies for rabbit 256 

anti-Sox17 1:500 (Abcam) or rabbit anti-LEF-1 1:500 (Cell Signaling Technology). Following primary 257 

incubation, blots were washed then incubated in the 2.5% NFDM containing the appropriate horseradish 258 

peroxidase-linked secondary (1:5,000; Santa Cruz Biotechnology) for 45 min at room temperature. 259 

Clarity ECL substrate (Bio-Rad) and the ChemiDoc MP system (Bio-Rad) were used to visualize 260 

immunotagged protein bands. Blots were stripped with stripping buffer (Restore Plus; ThermoScientific) 261 

and re-probed with a mouse anti-β-actin (1:2000; Cell Signaling Technology) antibody as a loading 262 

control. Densitometry of bands was performed using ImageLab software (Bio-Rad); density values were 263 

corrected for loading variations within each blot using the amount of β-actin expression.   264 

Statistics.  To detect statistically significant differences in mean values between a control and mutant 265 

gentoype at one developmental time point (vessel density, β-gal+ ECs per vessel length, cell 266 

proliferation density, qPCR analysis), Student t-tests were used. Analysis that compared more than two 267 

groups (e.g., control and two mutant gentoypes, multiple developmental time-points, multiple cell 268 

culture treatment conditions, etc.), a one-way analysis of variance (ANOVA) with Tukey’s post-hoc 269 

analysis was used to detect statistically significant differences between genotypes or treatment 270 

conditions using pairwise analysis.  The standard error of the mean (SEM) is reported on all graphs. 271 

Results 272 

Cerebrovascular development is impaired in Rdh10 mutant embryos 273 

 Mouse mutants with an ENU-induced point mutation in the RA-biosynthetic enzyme Rdh10 have 274 

reduced levels of RA and display developmental defects consistent with RA-deficiency (Ashique et al., 275 
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2012). Rdh10 mutants survive until E14.5 thus permitting analysis of RA-related neurovascular defects. 276 

E14.5 Rdh10 mutants display severe defects in eye, craniofacial development and as well as significant 277 

expansion of the dorsal telencephalon (Fig. 1A). The latter phenotype is caused by expansion of 278 

neocortical progenitors at the expense of neuron generation resulting in an elongated, ‘ballooned’ 279 

neocortex (Siegenthaler et al., 2009). In sections at the level of the forebrain, notably fewer (Fig. 1A 280 

arrow) or, in some areas, no isolectin-B4+ (Ib4+) blood vessels (Fig. 1A, open arrow) were present in 281 

the long, thin neocortex in the Rdh10 mutant brain. Avascular neocortical regions were not observed 282 

consistently though were usually seen in regions where the neocortex was very thin. Higher 283 

magnification images of the neocortex revealed fewer, though larger diameter vessels in the notably 284 

thinned Rdh10 mutant neocortex (Fig. 1B, arrow). Numerous large diameter vessels were seen in the 285 

PNVP vasculature adjacent to the Rdh10 mutant neocortex (Fig. 1B, open arrows). In contrast to the 286 

neocortical vasculature, Ib4+ vessels in the thalamus of Rdh10 mutants were not overtly different from 287 

control (Fig. 1B), indicating that severe vascular defects may be limited to the neocortex. 288 

 Blood vessels in the developing cortex appeared reduced in number while vessels in the PNVP 289 

appeared more numerous. Decreased EC proliferation within the neocortex and increased EC 290 

proliferation within the PVNP could account for these differences. We examined this possibility by 291 

quantifying the percent of GLUT-1+ ECs in the neocortical plexus and PNVP that incorporate the 292 

thymidine analog BrdU (EC proliferation index). Significantly more GLUT-1+/BrdU+ ECs were 293 

observed in Rdh10 mutant PNVP overlying the neocortex (Fig. 1C & D) whereas EC proliferation was 294 

significantly reduced in the vascular plexus within the Rdh10 neocortex (Fig. 1C & D). Of note, Rdh10 295 

mutants expression of GLUT-1, a glucose transporter enriched in CNS ECs whose expression is induced 296 

early in the CNS vasculature by WNT signaling (Daneman et al. 2010), appeared decreased in 297 

neocortical blood vessels and elevated in the neuroepithelial cells of the VZ as compared to control (Fig. 298 

1C).   299 
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 We next compared E14.5 cerebrovascular density to E12.5, an earlier time point when 300 

neocortical defects in Rdh10 mutant are not as severe. At E12.5, the thickness of the neocortical wall 301 

was comparable in Rdh10 mutants to littermate control tissue (Fig. 1E & F, left panels) and the vascular 302 

density in the neocortex was not significantly different between control and Rdh10 mutant embryos (Fig. 303 

1G). Of note, however, vessels in the Rdh10 mutant embryos appeared enlarged at this age (Fig. 1F, 304 

open arrows) indicating vascular defects are potentially present at this time point. In control mice both 305 

the neocortical wall and vasculature show significant growth between E12.5 and E14.5. However, from 306 

E12.5 to E14.5 in Rdh10 mutants there was substantial lateral expansion but very little radial expansion 307 

of the neocortex and blood vessel growth was significantly impaired (Fig. 1E, F & G). We next 308 

quantified vascular density in the striatum and thalamus of control and Rdh10 mutants at both E12.5 and 309 

E14.5 and found no differences in vascular growth between Rdh10 mutant and control samples (Fig. 310 

1G). This analysis demonstrates 1) cerebrovascular defects may emerge early in Rdh10 mutants during 311 

neocortical development and worsen over time and 2) vascular growth defects in Rdh10 mutants are 312 

specific to the neocortical region.  313 

Elevated Vegfa expression is associated with an up-regulation of hypoxia-inducible genes in Rdh10 314 

mutant neocortices and non-neocortical brain regions 315 

Neuroepithelial-derived VEGFA is a major regulator of vascular growth in the CNS (Haigh et 316 

al., 2003; Raab et al., 2004; James et al., 2009). Reduced VEGF-A from neural progenitors in the 317 

neocortical VZ of Rdh10 mutants could contribute to aberrant vascular growth in the neocortex. To test 318 

this, we quantified Vegfa gene expression using RNA isolated from neocortex only or all other non-319 

neocortical brain structures (striatum, thalamus, midbrain, hindbrain) at E13.5. Vegfa expression was 320 

substantially increased in both the Rdh10 mutant neocortical and non-neocortical samples as compared 321 

to littermate controls (Fig. 2A). Vegfa expression is induced in response to hypoxia and therefore the 322 

increase in Vegfa expression we observe in the Rdh10 mutants could be due to tissue hypoxia. We tested 323 
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this possibility by analyzing the expression of known hypoxia-inducible genes Ldha, Pdk1 and Cox4i2 324 

(Firth et al., 1994; Kim et al., 2006; Fukuda et al., 2007). All of these hypoxia-inducible genes were also 325 

up-regulated (Fig. 2A) indicating the elevated Vegfa expression in the neocortex is likely due to tissue 326 

hypoxia. Interestingly, increased expression of hypoxia genes were also observed in the non-neocortical 327 

regions of the Rdh10 mutants even though vascular development was not significantly affected in these 328 

regions (Fig. 2A). Expression of Slc2a1, which encodes the GLUT-1 protein, is also increased by 329 

hypoxia through a similar hypoxia inducible factor-mediated mechanism (Chen et al., 2001). We noticed 330 

that GLUT-1 appeared up-regulated in the neuroepithelium of Rdh10 mutant neocortices (Fig. 1C). We 331 

found that Slc2a1 expression was up-regulated in the neocortex but not in the non-neocortex of the 332 

Rdh10 mutants (Fig. 2B). Furthermore, quantification of GLUT-1 immunofluorescent intensity in 333 

neocortical VZ and in non-neocortical brain regions (striatum and thalamus) showed that VZ GLUT-1 334 

expression was significantly increased in the Rdh10 mutant neocortex but not in other brain regions (Fig. 335 

2C). This is evident in low magnification images of E14.5 control and Rdh10 mutant brains where 336 

GLUT-1 expression was limited to blood vessels in the control and in non-neocortical brain regions of 337 

Rdh10 mutants however regions of high neural GLUT-1 expression were observed specifically in the 338 

Rdh10 mutant neocortex (Fig. 2D, arrows and 2E). Collectively this data indicates that Rdh10 mutants 339 

have tissue hypoxia throughout the embryonic brain, possibly due to systemic defects in embryonic 340 

development. However, focal upregulation of GLUT-1 in the neocortex suggests hypoxia is more 341 

pronounced in the neocortex likely due to impaired vascular growth specifically in this brain structure. 342 

Endothelial WNT signaling is diminished in the Rdh10 mutant cerebrovasculature and correlates 343 

with elevated expression of WNT inhibitors in the neocortex. 344 

WNT signaling in CNS ECs, activated by neural derived WNT ligands WNT7a and WNT7b, is 345 

important for vascular growth, stabilization and acquisition of BBB properties. The neocortical vascular 346 

growth defects and altered expression of GLUT-1 in the vasculature and neuroepithelium in Rdh10 347 
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mutants (Figs. 1 and 2) is similar to mutant mice in which WNT7a and WNT7b are both deleted 348 

(Stenman et al., 2008) and when the WNT signaling component β-catenin is conditionally deleted from 349 

ECs (Daneman et al., 2009; Zhou et al., 2014). Thus, we next looked at the integrity of the WNT 350 

pathway (e.g., endothelial WNT signaling, WNT ligands and inhibitors) in Rdh10 mutant neocortices. 351 

We used the WNT signaling reporter mouse line Bat-gal-lacZ to assess endothelial WNT signaling in 352 

the Rdh10 mutant neocortical vasculature. β-galactosidase positive (β-gal+) ECs, as determined by co-353 

localization with Ib4, were readily apparent in the control neocortical vasculature (Fig. 3A, arrow) 354 

however β-gal+ ECs were nearly absent in the Rdh10 mutant neocortical vasculature and overlying 355 

PNVP (Fig. 3A, right panel). β-gal+ neural cells in the neocortex (Fig. 3A, open arrows) and in the 356 

overlying skin mesenchyme (Fig. 3A, double-arrows) were present in Rdh10 mutants. We quantified the 357 

number of β-gal+ ECs per vessel length at E12.5 and E14.5 in the neocortices of control and Rdh10 358 

mutant embryos. The density of β-gal+ ECs significantly increased across developmental time points in 359 

wildtype neocortices but was significantly reduced at both time points in Rdh10 mutants (Fig. 3B).  360 

We assayed expression of two known targets of WNT-mediated gene transcription in the CNS 361 

vasculature, Claudin-3 (Liebner et al., 2008) and LEF-1 (Filali et al., 2002). Consistent with Bat-gal-362 

LacZ expression analysis, Claudin-3 (Fig. 3C, D) and LEF-1 (Fig. 3E) expression were appreciably 363 

decreased in the neocortical vasculature of Rdh10 mutants. In conjunction with our quantitative analysis 364 

using the WNT signaling reporter, decreased expression of vascular LEF-1 and Claudin-3 in Rdh10 365 

mutants demonstrates decreased endothelial WNT signaling within the neocortex of these mutants.  366 

We next tested if the expression of WNT7a and WNT7b transcripts were reduced in neocortices 367 

of Rdh10 mutants, however qPCR analysis showed no difference between wild-type and Rdh10 mutants 368 

at E13.5 (Fig. 3F). RA plays a crucial role in the development of the lung primordium by suppressing 369 

the expression of the WNT inhibitor Dkk1 (Chen et al., 2010). It is possible that RA inhibits the 370 

expression of Dkk1 in the neocortex to ensure proper endothelial WNT signaling occurs. Expression of 371 
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Dkk1 as well as certain WNT inhibitors soluble frizzled receptor proteins (sFRPs) (Sfrp1, Sfrp2, and 372 

Sfrp5) were significantly upregulated in Rdh10 mutant neocortices (Fig. 3F). Elevated expression of 373 

WNT inhibitors was specific to the neocortex of Rdh10 mutants since no significant changes in WNT 374 

inhibitor expression were observed in non-neocortical regions (Fig. 3F).  375 

Dkk1 and Sfrp5 were the most robustly upregulated of the WNT inhibitors assayed in the Rdh10 376 

mutant neocortices and RA has been shown to directly suppress Dkk1 transcription in other developing 377 

organs (Chen et al., 2010). We used cultured neocortical progenitors cells (NPCs) derived from E14 378 

mouse neocortex to test the idea that RA may be required to suppress expression of Dkk1 and Sfrp5 in 379 

the developing neocortex. Treatment with RA significantly down-regulated expression of Dkk1 and 380 

Sfrp5 gene expression in NPCs (Fig. 3G). RA-mediated inhibition of Dkk1 and Sfrp5 expression was 381 

abrogated by the addition of a pan-RAR inhibitor suggesting that RARs are required to mediate the 382 

effect of RA on Sfrp5 and Dkk1 expression (Fig. 3G). We tested if RA modulated expression of Dkk1 383 

and Sfrp5 in cultured cortical neurons however Dkk1 and Sfrp5 were undetectable in cultured neurons 384 

(data not shown). Collectively this data shows that severe cerebrovascular growth defects in Rdh10 385 

mutants correlate with diminished endothelial WNT signaling, a pathway required for brain vascular 386 

development. Further, our data indicate RA may function in the neocortex to suppress expression WNT 387 

inhibitors in neocortical progenitors thus creating a permissive environment for WNT-mediated 388 

cerebrovascular growth. 389 

RA functions cell-autonomously in brain ECs to modulate WNT signaling.  390 

Severe vascular growth defects and increased expression of WNT inhibitors was only observed 391 

in the Rdh10 mutant neocortex, indicating a specific non-cell autonomous role for RA in this brain 392 

structure through regulating WNT inhibitor expression by neocortical progenitors. RARs are expressed 393 

by brain ECs, indicating RA signaling is likely active in brain ECs and may have an important, cell-394 

autonomous function in this cell type. Our first indication of this was an observation from our analysis 395 
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of endothelial WNT signaling in non-neocortical brain regions of Rdh10 mutants using endothelial Bat-396 

gal-lacZ expression as a readout of WNT activity. In the E14.5 thalamus, β-gal+ ECs were evident in 397 

the thalamic vasculature of both Bat-gal/+ and Rdh10; Bat-gal/+ mutant samples however the number 398 

and intensity of β-gal+ ECs was increased in the Rdh10 mutant (Fig. 4A, open arrows). Quantification of 399 

the number of β-gal+ ECs per vessel length in the striatal and thalamic vasculature at E14.5 revealed a 400 

significant increase in β-gal+ ECs in Rdh10 mutants (β-gal+/Ib4+ cells per 100 µm vessel length - 401 

wildtype: 1.8 ± 0.06 SEM vs Rdh10 mutant: 2.4 ± 0.17 SEM n≥3 p= 0.03). This data shows that 402 

endothelial WNT signaling is increased in non-neocortical regions of the Rdh10 mutant brain. 403 

RA signaling through its receptors has been shown to inhibit WNT signaling in a variety of 404 

cell types (Easwaran et al., 1999; Mulholland et al., 2005; Chanda et al., 2013) raising the possibility 405 

that RA may directly regulate WNT signaling in brain ECs. To begin to test this idea, we developed a 406 

mouse model in which RA signaling is specifically disrupted in brain ECs using an inducible EC-407 

specific CreERT2 line (Pdgfbi-CreERT2, referred to here as PdgfbiCre) (Claxton et al., 2008) and a 408 

conditional, dominant negative version of RARα allele located in the ROSA26R locus (dnRAR403-flox) 409 

(Rosselot et al., 2010). DnRARα403 is a truncation mutant of the human RARα that can bind to 410 

endogenous RARs but when expressed in a cell disrupts endogenous RA signaling activity (Tsai et al., 411 

1992; Damm et al., 1993). To look at the effect of disrupted endothelial RA signaling on prenatal brain 412 

vascular development, pregnant females were injected with tamoxifen at E9 and E10 to induce Cre-413 

mediated expression of dnRARα403 in ECs and fetuses were collected at E14.5, E16.5 and E18.5 (Fig. 414 

4B). To confirm vascular-specific expression of the PdgfbiCre transgene in the brain, we took advantage 415 

of the IRES-EGFP present in the transgene and used a GFP antibody to detect transgene expression. At 416 

E14.5, GFP expression was observed in Ib4+ blood vessels in the brain but was not Ib4+ microglia 417 

which could be distinguished by their ramified cell morphology (Fig. 4B). Grossly, E18.5 fetuses 418 

expressing one or two copies of the dnRAR403-flox allele (PdgfbiCre; dnRAR403-fl/+ and PdgfbiCre; 419 
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dnRAR403-fl/fl) had no obvious phenotype (Fig. 4C). In the brain, small hemorrhages were evident in 420 

E18.5 cerebral hemispheres in PdgfbiCre; dnRAR403-fl/fl animals (Fig. 4D). This was seen as 421 

extravasated GLUT-1+ red blood cells in sections (Fig. 4E, open arrows) next to amoeboid-shaped Ib4+ 422 

microglia (Fig. 4E, arrow in inset), indicative of activated microglia caused by micro-bleeds. 423 

Cerebrovascular density at E18.5 was not overtly affected when RA signaling was disrupted in ECs 424 

(Ib4+ vessel length/area of analysis – control (PdgfbiCre/+ or dnRAR403-flox): 0.35 ± 0.007 vs 425 

PdgfbiCre; dnRAR403-fl/+: 0.36 ± 0.012 vs PdgfbiCre; dnRAR403-fl/fl: 0.37 ± 0.004 n=3, p=0.5). This 426 

is consistent with our analysis of non-neocortical vasculature in Rdh10 mutant embryos and brain 427 

vascular development in embryos exposed to RAR inhibitors (Mizee et al., 2013). However, enlarged 428 

vessels were evident in the mutant cerebrovasculature (Fig. 4F, arrows) and cerebrovascular vessel 429 

diameter was significantly increased in PdgfbiCre; dnRAR403-fl/fl mutants at E18.5 (control 430 

(PdgfbiCre/+ or dnRAR403-flox): 5.8 µm ± 0.09 vs PdgfbiCre; dnRAR403-fl/fl: 7.0 µm ± 0.232 n=3, 431 

p=0.035). This data shows that disrupting RA signaling in brain ECs causes morphological changes in 432 

blood vessels and focal vascular instability (e.g., micro-bleeds) but does not appear to alter angiogenic 433 

growth. 434 

Possibly, disrupting RA signaling in the vasculature could abrogate neurodevelopmental 435 

processes such as neural progenitor proliferation and differentiation. We examined this in the E16.5 436 

neocortex of PdgfbiCre; dnRAR403-fl control and mutant animals by looking at expression of 437 

established progenitor cell (Pax6 and Tbr2) and post-mitotic neuronal markers (Ctip2). Qualitatively, the 438 

Pax6+ and Tbr2+ expressing progenitor populations appeared similar in PdgfbiCre; dnRAR403-flox 439 

control and mutant mice as did the positioning of Ctip2+ neurons in the lower part of the cortical plate 440 

(Fig. 4G). This data indicates that disruption of endothelial RA signaling and any subsequent effects on 441 

vascular development and stability (e.g., microbleeds) does not grossly affect corticogenesis.  442 



20 
 

To directly test if RA signaling functions cell-autonomously in brain ECs to inhibit WNT 443 

transcriptional activity, we bred the WNT transcriptional reporter line Bat-gal-lacZ into the 444 

PdgfbiCre; dnRAR403-flox control and mutant background and analyzed EC β-gal expression in the 445 

forebrain regions (e.g., neocortex, striatum and thalamus). β-gal+ ECs were more numerous in E18.5 446 

PdgfbiCre; dnRAR403-fl/fl fetal brain as compared to control (Fig. 5A, B open arrows) indicating that 447 

endothelial WNT signaling is more active when endothelial RA signaling is disrupted. Quantification of 448 

β-gal+ ECs per vessel lengths showed a significant increase in PdgfbiCre; dnRAR403-fl/+ and even 449 

more so in PdgfbiCre; dnRAR403-fl/fl mutants (Fig, 5C). Expression of LEF-1, a direct transcriptional 450 

target of WNT signaling expressed by brain ECs, appeared elevated in PdgfbiCre; dnRAR403-fl/fl 451 

mutants as compared to control (Fig. 5D, E) and quantification of LEF-1 protein expression in cortical 452 

lysate showed a significant increase in PdgfbiCre; dnRAR403-fl/fl mutant samples (LEF-1 band density 453 

relative to β-actin - PdgfbiCre/+ or dnRAR403-flox: 0.85 ± 0.09 vs PdgfbiCre; dnRAR403-fl/fl: 1.4 ± 0.2 454 

p=0.046 n=4). We looked at expression of LEF-1 in the head vasculature of control and PdgfbiCre; 455 

dnRAR403-fl/fl mutant to see if disrupted RA signaling in non-CNS vessels leads to ectopic WNT 456 

activity. LEF-1 was expressed strongly expressed in the skin but was not detectable in Ib4+ blood 457 

vessels in either genotype (Fig. 5G, arrows). This indicates that the interaction between RA and WNT 458 

signaling in ECs is likely limited to the brain vasculature. Further, this shows that expression of the 459 

dnRAR403-flox allele alone does not activate endothelial WNT signaling. Collectively our analysis of 460 

non-cortical vasculature in Rdh10 mutants and Pdgfbi-Cre; dnRAR403-flox mutants demonstrates that 461 

disruption of RA signaling in brain ECs causes increased WNT signaling and points to a novel, cell-462 

autonomous function for RA as an inhibitor of endothelial WNT signaling in the developing brain. 463 

RA exposure inhibits endothelial WNT signaling both in vivo and in cultured ECs. 464 
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We next tested if RA is sufficient to inhibit WNT activity in brain ECs by feeding pregnant Bat-465 

gal-lacZ/+ mice a RA-enriched diet from E10 to E14.5 or E16.5 and then analyzing β-gal+ EC density 466 

in the neocortical vasculature (Fig. 6A). Exposure to RA did not significantly alter β-gal+ endothelial 467 

cell density at E14.5 (Fig. 6B). Between E14.5 and E16.5 there was a significant increase in the β-gal+ 468 

EC density in fetuses from control diet females but this was not observed in RA-exposed animals, 469 

resulting in a significant difference between control and RA-diet at E16.5 (Fig. 6B). The RA-dependent 470 

reduction in WNT signaling did not affect neocortical vascular density at either age (Fig. 6C), indicating 471 

that the alterations in RA and WNT signaling caused by exogenous RA exposure did not overtly impact 472 

neurovascular growth. 473 

Our in vivo data points to an inhibitory effect of RA on WNT signaling but it is not clear if it can 474 

block WNT-mediated effects on brain EC behavior. We tested this in culture by determining whether 475 

RA inhibits the effect of WNT ligands on brain EC migration and proliferation. Treatment with the 476 

WNT ligand WNT7a promotes transwell migration of the mouse brain endothelioma cell line bEnd.3 477 

(Daneman et al., 2009) and we observed the same effect with WNT3a (Fig. 6D) and Wnt7a. RA in the 478 

nanomolar range had no effect on bEnd.3 cell transwell migration but blocked the pro-migratory effect 479 

of WNT3a (Fig. 6D) and WNT7a on migration (# of cells per 10 field: control: 963 ± 112 SEM; RA (50 480 

nM): 1070 ±146 SEM; WNT7a (5ug/ml): 1256 ± 37 SEM; RA+WNT7a: 945 ± 72 SEM; control vs 481 

WNT7a: p=0.0062; WNT7a vs RA+WNT7a: p=0.0027; n=3). The same concentration of WNT3a 482 

inhibited bEnd.3 cell proliferation, an effect that was blocked when cells were co-treated with RA (Fig. 483 

6E).  This data further confirms that RA can directly regulate endothelial WNT signaling and shows that 484 

RA can modulate WNT mediated endothelial cell behavior  485 

We next sought to determine whether the effect of RA on WNT signaling was at the level of 486 

RARs. We tested RARα specifically as it was the most abundant RAR expressed by fetal brain 487 

microvessels, which contain ECs (Fig. 6F). To do this we manipulated RA signaling in cultured cells 488 
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expressing a WNT-β-catenin signaling reporter. HEK293 cells were transfected with TOP-Flash 489 

(containing 7 copies of the TCF/LEF binding site upstream of a firefly luciferase gene) or FOP-Flash 490 

(containing 7 mutated copies of the TCF/LEF binding site upstream of a firefly luciferase gene). 491 

Activation of WNT signaling induces accumulation and subsequent translocation of β-catenin to the 492 

nucleus, which interacts with TCF/LEF transcription factors activating the TOP-Flash reporter construct 493 

but not the FOP-Flash reporter construct. Cells were co-transfected with control (pCIG), RARα, or 494 

RXRβ expression vectors. Cells transfected with control vector and treated with WNT3a showed 495 

enhanced TOP-Flash activity over FOP-Flash activity (p<0.001), whereas treatment with RA only had 496 

no significant effect on reporter activity with control vector (Fig. 6G). Co-treatment of WNT3a and RA 497 

to cells transfected with control vector led to reduced activation of the TOP-flash reporter as compared 498 

to WNT3a alone (Fig. 6G). Co-transfection of RARα had a significant, inhibitory effect on WNT 499 

signaling and decreased TOP-Flash activation by 70.6% following WNT3a treatment (p<0.001), by 500 

81.1% following RA treatment (p<0.001), and by 90.2% following co-treatment with WNT3a and RA 501 

(p<0.001) compared to vector controls (Fig. 6G). Interestingly, co-transfection of another retinoid 502 

receptor, RXRβ, did not alter WNT signaling activation following WNT3a, RA or combined WNT3a 503 

and RA treatment compared to similar treated vector controls (Fig. 6H). These results show that RARα 504 

can regulate WNT transcriptional activity.  505 

We next sought to determine whether disruption of RA signaling in cells altered their 506 

responsiveness to WNT ligands. To do this, cells were co-transfected with the same dominant-negative 507 

RARα construct (dnRARα403) used to construct the dnRAR403-flox allele used in our in vivo 508 

experiments (Damm et al., 1993; Sen et al., 2005). Expression of this truncated construct interferes with 509 

endogenous RA signaling because the transcriptional regulatory domain of the receptor is deleted 510 

(Damm et al., 1993; Sen et al., 2005; Rajaii et al., 2008). Expression of the dnRARα403 construct in 511 
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cells without treatment of WNT3a or RA had no effect on TOP flash reporter activity (Fig. 6I) showing 512 

that expression of dominant negative receptor does not directly activate WNT transcriptional activity. In 513 

cells expressing the dnRARα403 construct, WNT3a-mediated activation of the TOP-Flash reporter was 514 

substantially increased as compared to the WNT3a treated cells with control vector (Fig. 6I). This shows 515 

that expression of dnRARα403 disrupts the normal RAR-mediated inhibition of WNT signaling within 516 

cells, possibly by displacing endogenous receptors in retinoid receptor complexes. We observed an RA-517 

dependent component as co-treatment with RA and WNT3a dampened the activation effect of dnRARα 518 

(Fig. 6I). Previous studies have shown that dnRARα403 can still bind RA ligand, although with less 519 

affinity than wild type RARα (Damm et al., 1993). Together, these studies confirm a reciprocal 520 

relationship between WNT and RA signaling at the level of RARs.  521 

Sox17 is a target of WNT signaling in fetal brain ECs and is up-regulated following disruption of 522 

RA signaling 523 

 WNT signaling regulates neurovascular development in the CNS and our evidence points to RA 524 

signaling as a modulator of WNT signaling in brain ECs. Sox17 is a transcription factor that is required 525 

for vascular development and its expression is regulated by endothelial WNT signaling in the post-natal 526 

CNS vasculature (Ye et al., 2009; Corada et al., 2013). We tested if the latter was also the case for the 527 

fetal brain vasculature using mice with EC conditional knockdown of WNT signaling component β-528 

catenin (PdgfbiCre; Ctnnb1-flox). At E14.5, Sox17 was expressed, to varying to degrees, by ECs in the 529 

neocortex whereas Sox17 expression was appreciable decreased in dysplastic blood vessels of 530 

PdgfbiCre; Ctnnb1-fl/fl mutants (Fig. 7A). Moreover, Sox17, along with WNT transcriptional targets 531 

Lef1 and Axin2, expression was significantly reduced in the fetal brain microvasculature isolated from 532 

E18.5 PdgfbiCre; Ctnnb1-fl/fl mutant brains (Fig. 7B). This data shows that Sox17 is regulated by 533 

WNT-β-catenin signaling in the fetal brain vasculature.  534 
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 We next investigated Sox17 in the context of disrupted RA signaling using PdgfbiCre; 535 

dnRAR403-fl/fl mutants that have elevated endothelial WNT transcriptional activity. High expression of 536 

Sox17 was observed in some vessels in the E18.5 control cortex (Fig. 7C, arrows in left panel) whereas 537 

other vessels had low Sox17 expression (Fig. 7C, open arrows in left panel). In contrast, Sox17 was 538 

strongly expressed by all blood vessels in the PdgfbiCre; dnRAR403-fl/fl fetal neocortex (Fig. 7C, 539 

arrows in right panel) and Sox17 protein expression, quantified via immunoblot, was significantly 540 

elevated in fetal cortical lysate as compared to control (Fig. 7D; Sox17 band density relative to β-actin - 541 

PdgfbiCre/+ or dnRAR403-flox: 1.3 ± 0.07 vs PDGFBiCre; dnRAR403-fl/fl: 1.8 ± 0.14 p=0.019 n=4). 542 

These data show that brain ECs with disrupted RA signaling, and increased WNT signaling, have 543 

increased Sox17 expression.  544 

 Sox17 is expressed by arterial ECs and is required for expression of artery specific markers 545 

(Corada et al., 2013). In the fetal brain vasculature, we found Sox17 was weakly expressed by venous 546 

blood vessels, identified by nuclear receptor Coup-TFII (Fig. 8A, open arrows). Sox17 was highly 547 

expressed by CoupTFII-negative vessels (Fig. 8A, arrow) and arterial vessels identified by Ephrin-B2-548 

GFP in the EC nuclei (Fig. 8C, arrow).  Expression of Sox17 was appreciable higher in Coup-TFII+ 549 

venous ECs in PdgfbiCre; dnRAR403-fl/fl fetal brains as compared to control brain vasculature (Fig. 8B, 550 

open arrows). Coup-TFII was also expressed by perivascular mural cells (Fig. 8A, B, double-arrow) and 551 

some neurons (Fig. 8B, triple-arrow). High expression of Sox17 was limited to Ephrin B2-GFP+ vessels 552 

in control brain whereas high Sox17 was observed in both Ephrin B2-GFP+ and Ephrin-B2-GFP- ECs 553 

in PdgfbiCre; dnRAR403-fl/fl fetal brain vasculature (Fig. 8C and D, arrows: Ephrin-B2-GFP+/Sox17+, 554 

open arrows: Ephrin-B2-GFP-/Sox17+). GFP signal was visible in EC membrane in PdgfbiCre; 555 

dnRAR403-fl/fl sections but not control due to IRES-GFP present in PdgfbiCre allele (Fig. 8D, triple-556 

arrow). The increase in Sox17 in the vasculature, including venous blood vessels that normally have low 557 

levels of Sox17, in PdgfbiCre; dnRAR403-fl/fl fetal brains did not result in defects in arterial-venous 558 



25 
 

specification. This is based on the observation that mutants retained expression of venous marker Coup-559 

TFII and had both Ephrin-B2-GFP positive and negative vessels (Fig. 8B, D). Collectively our data 560 

suggests that RA signaling in endothelial cells may act as a balance to ensure normal WNT-driven brain 561 

vascular development and moderate endothelial Sox17 expression levels.  562 

Discussion (1500 words) 563 
 564 

Here we demonstrate that RA has separate functions during brain vascular development. In the 565 

developing neocortex, RA functions non-cell autonomously to promote endothelial WNT signaling 566 

and cerebrovascular growth via a mechanism that involves suppressing expression of WNT 567 

inhibitors by neocortical progenitors and possibly neurons (Fig. 9A). RA also functions cell-568 

autonomously in brain ECs to inhibit endothelial WNT signaling and prevent ectopic expression of 569 

WNT target genes like Sox17 (Fig. 9B). Our work, for the first time, places a factor upstream of WNT 570 

pathway in brain vascular development and reveals a multi-faceted mechanism through which RA acts 571 

on both neural and vascular cells to target endothelial WNT signaling activity.  572 

 Rdh10 mutants globally lack RA and have significant developmental defects consistent with RA-573 

deficiency. Here we show that, in addition to the defects in neocortical development, growth of the 574 

cerebrovasculature is severely impaired in Rdh10 mutants. Other brain regions have relatively normal 575 

vasculature pointing to a unique role for RA in cerebrovascular development. We provide data that two 576 

major neuro-angiogenic pathways, VEGFA and WNT, are disrupted in Rdh10 mutant neocortices. With 577 

regard to VEGFA, we see that Vegfa and several other hypoxia-inducible genes are upregulated in both 578 

the Rdh10 mutant neocortex and non-neocortical brain regions. This data indicates widespread hypoxia 579 

in the developing brain, possibly caused by other developmental defects in Rdh10 mutants. Tissue 580 

hypoxia appears to be more pronounced in the Rdh10 mutant neocortex, as evidenced by selective neural 581 

upregulation of GLUT-1 in this brain region, possibly due to severe cerebrovascular growth defects. 582 

Despite elevated Vegfa gene expression, we do not observe vascular overgrowth and impaired vascular 583 
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integrity (e.g., hemorrhage) in the Rdh10 mutant brain, two features that have been reported in mutant 584 

mice with conditional upregulation of Vegfa in the neuroepithelium (Yang et al., 2013). Possibly, tissue 585 

hypoxia and Vegfa upregulation only begin to emerge at the end of Rdh10 mutant viability (E14.5) and 586 

therefore VEGF-A protein levels are only elevated at late time points. At earlier developmental time 587 

points (E12.5), VEGF-A could be decreased in the Rdh10 mutant neocortex and possibly contribute to 588 

defects in cerebrovascular development, namely enlarged vasculature, seen at these time points. Our 589 

analysis does not differentiate between Vegfa transcript expressed by different cell types present in the 590 

tissue samples. VEGF-A is expressed by neural progenitors where it is required for vascular growth in 591 

the brain however VEGF-A expressed by ECs is reported to be required for neocortical and vascular 592 

development (Li et al., 2013). Increased VEGF-A from different cell sources in the neocortex could 593 

differentially effect vascular and neocortical development however more studies are needed to address 594 

this specifically.       595 

 Perhaps more compelling is our evidence demonstrating near absence of endothelial WNT 596 

signaling concurrent with cerebrovascular defects in Rdh10 mutants. Endothelial WNT signaling, 597 

stimulated by WNT7a and WNT7b produced by progenitors and neurons in the developing brain, is 598 

required for brain vascular growth, stability and BBB formation (Stenman et al., 2008; Daneman et al., 599 

2009; Zhou et al., 2014). Therefore reduced endothelial WNT signaling is likely a major factor 600 

contributing to defective cerebrovascular development in Rdh10 mutants. We provide evidence of a 601 

non-cell autonomous function for RA as the underlying cause of reduced endothelial WNT signaling 602 

in Rdh10 mutants. We show that WNT inhibitors Dkk1 and several sFRPs are specifically upregulated 603 

in the Rdh10 mutant neocortex but no other brain regions. Dkk1 is a potent inhibitor of canonical WNT 604 

signaling through direct binding to WNT co-receptors low-density lipoprotein receptor-related 5 and 6 605 

(LRP5/6) whereas sFRPs antagonize WNT signaling by interfering with the interaction between WNT 606 

ligands and receptors (Mao et al., 2001). Dkk1 and sFRP5 show the most substantial increase in gene 607 
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expression in the Rdh10 neocortex and we provide cell culture data that RA, functioning through RARs, 608 

is sufficient to suppress Dkk1 and Sfrp5 gene expression in neocortical progenitors. This sets up a 609 

model in which RA-deficiency in Rdh10 mutants leads to loss of RA-mediated suppression WNT 610 

inhibitors in neocortical progenitors, and possibly post-mitotic neurons, and the resulting ectopic 611 

expression of WNT inhibitors causes impairment of endothelial WNT signaling in the neocortex (Fig. 612 

9A). Equally important to consider is that the cerebrovascular defects and diminished endothelial WNT 613 

signaling are occurring within a severely dysplastic neocortex caused by lack of RA. Reduced numbers 614 

of neocortical progenitors and neurons caused by aberrant proliferation and differentiation likely plays 615 

some role in altered expression of WNT pathway proteins. This is indicated by analysis showing that 616 

vascular growth defects are most pronounced at E14.5, a time point when the proliferative and post-617 

mitotic regions of the Rdh10 mutant neocortex are substantially thinner than control animals. An 618 

intriguing possibility is that persistent tissue hypoxia in the neocortex could be contributing to the 619 

aberrant progenitor proliferation and differentiation in the Rdh10 mutant cortex. In this way, the vascular 620 

defects could be a major contributor or, at least, exacerbating defects in corticogenesis. Recent work 621 

demonstrated that the neocortical progenitors switch from self-renewing divisions to neuro-generating 622 

divisions coincided with cerebrovascular growth and reduced levels of tissue hypoxia (Lange et al., 623 

2016). Further studies are needed to understand how defective corticogenesis and impaired 624 

cerebrovascular development are connected in Rdh10 mutant animals.  625 

In the non-neocortical brain regions of Rdh10 mutants, we found that endothelial WNT 626 

signaling was elevated. This was our first indication that RA may function cell-autonomously in 627 

brain ECs to inhibit WNT signaling. This observation was supported by increased endothelial WNT 628 

signaling in mutants with EC-specific disruption of RA signaling and data showing that exposure of 629 

embryos to excess RA diminishes brain endothelial WNT signaling. It is important to note that analysis 630 

of endothelial WNT signaling in PdgfbiCre; dnRAR403-flox mutants and RA-treated embryos 631 
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encompassed neocortical and non-neocortical (striatum, thalamus) structures. This suggests that the cell-632 

autonomous function for RA signaling in brain ECs throughout the brain is to inhibit endothelial WNT 633 

signaling. In the neocortex, however, our data demonstrates RA has a separate, non-cell 634 

autonomous function with regard to endothelial WNT signaling: controlling expression of WNT 635 

inhibitors to create a permissive environment for WNT-mediated cerebrovascular growth.  636 

Presumably, loss of RA in the neocortex of Rdh10 mutants lessens the inhibitory effect of RA 637 

signaling on endothelial WNT transcriptional activity. This is observed in other Rdh10 mutant 638 

brain regions. However, the substantial increase in WNT inhibitors resulting from loss of RA 639 

acting on other cell types likely severely impairs activation of endothelial WNT pathways by WNT 640 

ligands. The significance of RA having non-cell and cell-autonomous functions with regard to 641 

endothelial WNT signaling specifically in the neocortex is not clear but will be addressed in future 642 

studies.  643 

In the developing CNS, nascent vessels are surrounded by WNT ligands from neural sources. 644 

These signals ensure vessel integrity, help initiate and maintain barrier properties in the 645 

neurovasculature, features that are required by all CNS ECs (Liebner et al., 2008; Stenman et al., 2008; 646 

Daneman et al., 2009; Zhou et al., 2014).  Why, then, is RA acting as an inhibitor to this key pathway in 647 

brain ECs? Ectopic WNT signaling in the developing embryonic vasculature leads to widespread 648 

arterialization (Corada et al., 2010) thus RA might act as an important “brake” on WNT signaling in the 649 

neurovasculature to prevent inappropriate acquisition of arterial traits. We do not, however, find 650 

evidence of arterialization of brain vessels in PdgfbiCre; dnRAR403-flox mutants. Possibly, fetal brain 651 

ECs do not respond to elevated WNT signaling in the same way as newly specified ECs. In support of 652 

this, when an inducible Cre line was used to express constitutively active β-catenin in ECs after E9.5 the 653 

authors did not observe widespread arterialization of the embryonic vasculature (Corada et al., 2010). 654 

We hypothesize that RA modulates WNT signaling through its receptor RARα to prevent over-655 
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expression of its target Sox17 (Fig. 9B). Forcing expression of Sox17 in ECs causes defects in brain and 656 

retinal vascular development, most notably increased vascular growth (Lee et al., 2014). Of note, we 657 

find dysplastic vessels and micro-bleeds in PdgfbiCre; dnRAR403-flox mutants that have ectopic Sox17 658 

expression. Forthcoming experiments will address if the micro-bleeds and increased vascular diameter 659 

in PdgfbiCre; dnRAR403-flox mutants is caused by elevated Sox17 expression and explore the 660 

transcriptional targets of Sox17 in brain ECs that mediates its function in the brain endothelium.    661 

Our data showing repression of WNT signaling by RA in CNS ECs is consistent with the 662 

established literature on cross-talk between RA and WNT pathways both in development and disease. 663 

RA inhibits WNT signaling during hematopoietic stem cell development (Chanda et al., 2013) and in a 664 

variety of cancer cell lines with oncogenic β-catenin activity (Mulholland et al., 2005). Modulation of 665 

WNT signaling by RA signaling likely occurs at the level of RARα which we show is the main RAR 666 

expressed brain fetal brain ECs. RARs can interact with components of the WNT transcriptional 667 

complex which includes β-catenin, TCF members and Lef1 and through these interactions modulate 668 

WNT-mediated transcription (Easwaran et al., 1999; Shah et al., 2003). Future work looking at the direct 669 

interactions between proteins in these two pathways will provide insight into how brain ECs 670 

appropriately integrates RA and WNT signaling during brain vascular development.         671 
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Figure 1. Neocortical vascular development in E14.5 Rdh10 mutant embryos 816 

(A) Ib4-labeled blood vessels in E14.5 wildtype and Rdh10 mutant forebrain. Open arrow indicates 817 

avascular area of the neocortex, arrow indicates reduced vascular plexus in expanded neocortex. (B) 818 

High magnification images of E14.5 vascular plexus in the neocortex and thalamus of wildtype and 819 

Rdh10 mutants. Open arrows and arrows indicate enlarged, dysplastic vessels in PNVP and within the 820 

neocortex, respectively. (C) Representative images of GLUT-1/BrdU labeling in the two vascular plexus 821 

in the neocortex (NC): the superficial perineural vascular plexus (PNVP) and plexus within the 822 

neocortex. Open arrows indicate BrdU+/Glut+ cells in both panels. (D) Graphs depicting quantification 823 

of endothelial cell (EC) proliferation index in the NC PNVP and NC plexus in E14.5 wildtype and 824 

Rdh10 mutants. Asterisks indicate significance from wildtype value. (E) Low magnification images of 825 

E12.5 and E14.5 wildtype and Rdh10 mutant forebrains. (F) High magnification images of neocortical 826 

PNVP and internal vascular plexus at E12.5 and E14.5 in wildtype and Rdh10 mutants. (G) Graph 827 

depicting vascular density in the two genotypes in the neocortex and thalamus at E12.5 and E14.5. 828 

Asterisks indicate significance from E12.5 value of the same genotype, # indicates significance from 829 

E14.5 wildtype value. Scale bars: (A and E) 500 µm and (B and C) 100 µm. 830 

Figure 2 - Hypoxia inducible targets VEGFA and GLUT-1 are elevated in Rdh10 mutant neocortices. 831 

(A) Quantitative PCR for hypoxia inducible genes Vegfa, Ldha, Pdk, and Cox4i2 transcript expression 832 

in control and Rdh10 mutant neocortices and non-neocortical brain structures. (B) Quantitative PCR for 833 

Slc2a1 (GLUT-1) transporter transcript expression in control and Rdh10 mutant neocortices and non-834 

neocortical brain structures. (C) Quantification of average intensity signal for GLUT-1 in the VZ of 835 

neocortical and striatum/thalamus brain regions of control (wildtype, Rdh10 heterozygous) and Rdh10 836 

mutants. (D) Low magnification images of GLUT-1 labeling in E14.5 wildtype and Rdh10 mutant brains 837 

at the level of the cortex and striatum. Arrows indicate regions of high neuroepithelial GLUT-1 signal in 838 

the Rdh10 mutant neocortical VZ. (E) High-magnification images of GLUT-1 labeling in the neocortical 839 
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VZ and striatum of wildtype and Rdh10 mutants. Asterisks indicate significance from control (p<0.05). 840 

Scale bars are 500 µm.  841 

Figure 3. Diminished WNT signaling in Rdh10 mutant cerebrovasculature  842 

(A) β-galactosidase (β-gal, green) and Ib4 (red) co-immunolabeling in neocortical blood vessels at E14.5 843 

of Bat-gal-LacZ/+ and Rdh10 mutant; Bat-gal-LacZ/+ animals. Arrows indicate β-gal+ ECs, open 844 

arrows indicate β-gal+ neural cells, double-head arrows point to β-gal+ cells in the skin. (B) 845 

Quantification of number of β-gal+ ECs per vessel length in in the neocortex of control (wildtype and 846 

Rdh10 heterozygous) and Rdh10 mutant animals at E12.5 and E14.5. Asterisks indicate significance 847 

between control at E12.5 and E14.5, # indicates significance from E12.5 wildtype and *# indicates 848 

significance from E14.5 wildtype. (C, D) Arrows indicate Ib4+ (red) vessels with Claudin-3 (green) 849 

signal in the neocortical region of a control, Bat-gal/+ brain. Open arrows in the control and mutant 850 

samples indicate Claudin-3 signal in the skin overlying the brain. Double-arrows indicate Claudin-3-851 

/IB4+ vessels in the Rdh10 mutants. (E) Arrows indicate LEF-1+ (green) ECs (Ib4 in red) in the 852 

neocortex of Bat-gal-LacZ/+ and Rdh10 mutant; Bat-gal-LacZ/+ animals. (F) Quantitative PCR for 853 

transcript expression of WNT ligands (Wnt7a, Wnt7b) and WNT inhibitors (Sfrp1, Sfrp2, Sfrp5, and 854 

Dkk1) in wildtype and Rdh10 mutant E13.5 neocortices and non-neocortical brain structures. Asterisks 855 

indicate significance between control and Rdh10 mutants. (G) Quantitative PCR for transcription 856 

expression of the WNT inhibitors Sfrp5 and Dkk1 in cultured neocortical progenitors treated with RA or 857 

a pan RAR inhibitor. # indicates significance from vehicle. Scale bars are 100 µm. 858 

Figure 4. Elevated WNT signaling in non-cortical Rdh10 mutant vasculature and neurovascular 859 

development in PdgfbiCre; dnRAR403-flox animals  860 

(A) β-galactosidase (β-gal: green) and Ib4 (red) co-immunolabeling in the thalamic vasculature of E14.5 861 

Bat-gal-LacZ/+ and Rdh10 mutant; Bat-gal-LacZ/+ animals. Open arrows indicate β-gal+ ECs. (B) 862 
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Top: Depiction of pre-natal tamoxifen injection timing for PdgfbiCre; dnRAR403-flox animals. Bottom: 863 

GFP (green) immunostaining and Ib4 (red) labeling in E14.5 PdgfbiCreERT2-IRES-GFP (aka 864 

PdgfbiCre) brain to illustrate specific expression of transgene in blood vessels. Arrows indicate 865 

GFP+/Ib4+ blood vessels, open arrows indicate GFP-/Ib4+ microglia. (C) Whole fetus images of E18.5 866 

control (dnrar403-fl/+), and mutant (PdgfbiCre; dnrar403-fl/+ or fl/fl). (D) Low magnification image of 867 

whole brains from PdgfbiCre/+ animals with 0 or 2 copies of the dnRAR403-flox allele. Arrows indicate 868 

hemorrhage within the cerebral hemispheres (CH). (E) GLUT-1 (green), Ib4 (red) and DAPI stained 869 

cortical sections of E18.5 PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl mutant. Open arrows indicate 870 

micro-hemorrhages. Inset shows GLUT-1+ red blood cells in the brain parenchyma, indicative of 871 

hemorrhage. Arrow in inset indicates activated Ib4+ microglia with amoeboid morphology. (F) Ib4+ 872 

cerebrovasculature in E18.5 PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl mutant sections. Arrows 873 

indicate enlarged vessels in mutant sample. (G) Neocortical progenitor markers Pax6, Tbr2 and deep 874 

layer cortical neuronal marker Ctip2 in E16.5 PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl mutant 875 

sections. Scale bars = 100 µm (A & G) and 200 µm (E & F). 876 

Figure 5. Endothelial WNT signaling in increased in fetal brain vasculature of PdgfbiCre; dnRAR403-877 

flox mutants  878 

(A, B) Open arrows indicate β-gal+ (green), Ib4+ (red) ECs in the striatum of E18.5 PdgfbiCre/+; Bat-879 

gal-LacZ/+ and PdgfbiCre; dnRAR403-fl/fl; Bat-gal-lacZ/+. (C) Graph depicting quantification of β-880 

gal+ ECs per vessel length in E18.5 control (PdgfbiCre/+; Bat-gal-LacZ/+ or dnRAR403-flox;Bat-gal-881 

LacZ/+) and mutant (PdgfbiCre; dnRAR403-fl/+; Bat-gal-lacZ/+, PdgfbiCre; dnRAR403-fl/fl; Bat-gal-882 

lacZ/+) cortical, striatal and thalamic vasculature. Asterisk indicates significance from control, # 883 

indicates significance from PdgfbiCre; dnRAR403-fl/+. (D, E) LEF-1 (green), Ib4+ (red) ECs in the 884 

neocortex of PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl. (F) LEF-1 (54 kDa), and β-actin (52 kDa) 885 
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immunoblots on protein lysate from E18.5 control (□: PdgfbiCre/+ or dnRAR403-flox) or mutant (■: 886 

PdgfbiCre; dnRAR403-fl/fl) neocortices.  (G) LEF-1 (green) and Ib4 (red) immunofluorescence in the 887 

head area of E18.5 PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl animals. Arrows indicate Ib4+/LEF-1- 888 

vessels. Scale bars are 100 µm.  889 

Figure 6. RA inhibits endothelial WNT signaling in vivo and in vitro.  890 

(A) Depiction of RA treatment paradigm for pregnant Bat-gal-LacZ/+ animals. (B) Graph depicting 891 

quantification of β-gal+ ECs per 100 µm vessel length in control and RA exposed fetuses at E14.5 and 892 

E16.5. Asterisk indicates statistically significant difference from E14.5, control diet. # indicates 893 

statistically significant difference from control diet at E16.5. (C) Graph depicting quantification of 894 

vessel density in control and RA diet treated animals at E14.5 and E16.5. (D) Graph depicting 895 

quantification of transwell migration assay with bEnd.3 cell line following treatment with RA, WNT3a 896 

or RA+WNT3a. Asterisks indicate significance from untreated cells (CTL). (E) Quantification of cell 897 

proliferation of bEnd.3 cells following a 3 day treatment of RA, WNT3a or both treatments. Asterisks 898 

indicate significance from untreated cells (CTL). # indicates statistically significant difference from 899 

WNT3a treatment. (F) RT-PCR for RARs and RXRs using E18.5 microvessel and postnatal day 7 900 

meninges cDNA. Housekeeping gene GAPDH is used to show equal amount of RNA to generate the 901 

cDNA used in the RT-PCR reaction.  (G) Transfection of a RARα construct decreases the response of 902 

cells to WNT stimulation. Two way ANOVA revealed a significant difference due to construct (F(1,16) 903 

=1301, p<0.001) and treatment (F(3,16) =518.1, p<0.001), as well as a significant interaction between 904 

both factors (F(3,16) =200.1, p<0.001). (H) RXRβ does not alter the response of cells to WNT 905 

stimulation. Two way ANOVA revealed a significant difference due to treatment (F(3,16) =90.17, 906 

p<0.001), but no significant difference due to construct (F(1,16) =4.358, p>0.05) or interaction between 907 

the two factors (F(3,16) =1.188, p>0.05). (I) dnRARα increases the response of cells to WNT stimulation. 908 
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Two way ANOVA revealed a significant difference due to construct (F(1,16) =110.7, p<0.001) and 909 

treatment (F(3,16) =110.7, p<0.001), as well as a significant interaction between the two factors (F(3,16) 910 

=49.98, p<0.001). For G-I, asterisks directly above the bar indicate significance from untreated pCIG 911 

control and hash marks indicate significance from WNT3a treatment alone; within group differences are 912 

indicated by connected lines.  913 

Figure 7. Elevated expression of Sox17 in PdgfbiCre; dnRAR403-fl/fl  neurovasculature.  914 

(A) Immunostaining for Sox17 (green) in Ib4+ (red) cerebral vessels in tissue from control and an EC-915 

specific knockdown of WNT signaling component β-catenin at E14.5 (PdgfbiCre; Ctnnb1-fl/fl). (B) 916 

Graph depicting Lef1, Axin2, and Sox17 transcript levels in microvessels isolated from E18.5 917 

PdgfbiCre/+;Ctnnb1-fl/+ and PdgfbiCre/+; Ctnnb1-fl/fl brains. Asterisks indicate significance from 918 

PdgfbiCre;Ctnnb1-fl/+ value. (C) Representative Sox17 (green) immunostaining in Ib4+ (red) cerebral 919 

vessels at E18.5 from PdgfbiCre/+ and PdgfbiCre; dnRAR403-fl/fl brains. Open arrows indicate weakly 920 

Sox17+ vessels, arrows indicate vessels with high Sox17 expression. (D) Sox17 (44 kDa) and β-actin 921 

(52 kDa) immunoblots on protein lysate from E18.5 control (□: PdgfbiCre/+ or dnRAR403-flox) or 922 

mutant (■: PdgfbiCre; dnRAR403-fl/fl) neocortices.  Scale bars are 100 µm. 923 

Figure 8. Elevated Sox17 expression in PdgfbiCre; dnRAR403-fl/fl venous and arterial vessels. 924 

(A, B) Immunostaining for Sox17 (green) and Coup-TFII (red) on E18.5 PdgfbiCre/+ (A) and 925 

PdgfbiCre; dnRAR403-fl/fl (B) brains. Open arrows indicate Ib4+ (blue) vessels with Coup-TFII+ ECs 926 

(presumptive venous blood vessel). Arrow in A indicates blood vessel in control brain tissue that is 927 

Coup-TFII-/Sox17+ (presumptive arterial vessel). Double arrows indicate Coup-TFII+ mural cells, triple 928 

arrow indicates Coup-TFII+ neural cell. (C, D) GFP (red) and Sox17 (green) immunostaining in control 929 

and PdgfbiCre; dnRAR403-fl/fl animals expressing Ephrin B2-GFP that labels arterial EC nuclei. 930 

Arrows indicate GFP+/Sox17+ arterial EC nuclei and open arrows indicate Sox17 expression in GFP- 931 
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EC nuclei. C” and D” show overlay with Ib4 to label the vasculature (blue). Ephrin-B2-GFP is also 932 

expressed by some neurons (double-head arrow). GFP IF is present in endothelial cell membrane of D 933 

images due to IRES-GFP present in PdgfbiCre allele construct (triple-arrow). Scale bars are 100 µm. 934 

Figure 9. Model of RA functions during brain vascular development 935 

(A) RA in the developing neocortex normally functions to suppress expression of WNT inhibitors 936 

(Dkk1, sFRPs) to create a permissive environment for endothelial WNT signaling that drives 937 

cerebrovascular development. In RA-deficient Rdh10 mutants, ectopic expression of WNT inhibitors 938 

impedes endothelial WNT signaling which disrupts growth of the cerebrovasculature. (B) RA functions 939 

cell autonomously in brain endothelial cells (ECs), likely through its receptor RARα, to inhibit WNT-β-940 

catenin transcriptional and limit expression of its target gene Sox17.  941 
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